Publications by authors named "I E Einarsdottir"

The growth hormone (Gh)/insulin-like growth-factor (Igf)/Igf binding protein (Igfbp) system regulates growth and osmoregulation in salmonid fishes, but how this system interacts with other endocrine systems is largely unknown. Given the well-documented consequences of mounting a glucocorticoid stress response on growth, we hypothesized that cortisol inhibits anabolic processes by modulating the expression of hepatic igfbp mRNAs. Atlantic salmon (Salmo salar) parr were implanted intraperitoneally with cortisol implants (0, 10, and 40 μg g body weight) and sampled after 3 or 14 days.

View Article and Find Full Text PDF

Feminizing endocrine disrupting compounds (EDCs) affect the growth and development of teleost fishes. The major regulator of growth performance, the growth hormone (Gh)/insulin-like growth-factor (Igf) system, is sensitive to estrogenic compounds and mediates certain physiological and potentially behavioral consequences of EDC exposure. Igf binding proteins (Igfbps) are key modulators of Igf activity, but their alteration by EDCs has not been examined.

View Article and Find Full Text PDF

The growth hormone (GH)-insulin-like growth factor I (IGF-I) system regulates important physiological functions in salmonid fish, including hydromineral balance, growth, and metabolism. While major research efforts have been directed toward this complex endocrine system, understanding of some key aspects is lacking. The aim was to provide new insights into GH resistance and growth hormone-binding proteins (GHBPs).

View Article and Find Full Text PDF

Chronic stress detrimentally affects animal health and homeostasis, with somatic growth, and thus skeletal muscle, being particularly affected. A detailed understanding of the underlying endocrine and molecular mechanisms of how chronic stress affects skeletal muscle growth remains lacking. To address this issue, the present study assessed primary (plasma cortisol), secondary (key components of the GH/IGF system, muscular proteolytic pathways, and apoptosis), and tertiary (growth performance) stress responses in fine flounder ( Paralichthys adspersus) exposed to crowding chronic stress.

View Article and Find Full Text PDF

Background: In preparation for migration from freshwater to marine habitats, Atlantic salmon (Salmo salar L.) undergo smoltification, a transformation that includes the acquisition of hyposmoregulatory capacity. The growth hormone (Gh)/insulin-like growth-factor (Igf) axis promotes the development of branchial ionoregulatory functions that underlie ion secretion.

View Article and Find Full Text PDF