SIRT3 is a genomically expressed, mitochondrial localized tumor suppressor protein where it directs multiple metabolic processes by deacetylating downstream protein substrates. Genetic deletion of Sirt3 in mice leads to the spontaneous development of mammary tumors starting at 1 year, and decreased SIRT3 messenger RNA has been observed in several human tumors including breast malignancies. In this investigation, we assessed SIRT3 expression in human breast cancer tissue microarray and examined the relationship between SIRT3 expression and outcome in patients with breast cancer.
View Article and Find Full Text PDFCooperativity between oncogenic mutations is recognized as a fundamental feature of malignant transformation, and it may be mediated by synergistic regulation of the expression of pro- and antitumorigenic target genes. However, the mechanisms by which oncogenes and tumor suppressors coregulate downstream targets and pathways remain largely unknown. Here, we used ChIP coupled to massively parallel sequencing (ChIP-seq) and gene expression profiling in mouse prostates to identify direct targets of the tumor suppressor Nkx3.
View Article and Find Full Text PDFHuman tumors are heterogeneous and evolve through a dynamic process of genetic mutation and selection. During this process, the effects of a specific mutation on the incipient cancer cell may dictate the nature of subsequent mutations that can be tolerated or selected for, affecting the rate at which subsequent mutations occur. Here we have used a new mouse model of prostate cancer that recapitulates several salient features of the human disease to examine the relative rates in which the remaining wild-type alleles of Pten and p53 tumor suppressor genes are lost.
View Article and Find Full Text PDFAlzheimer's disease (AD) is associated with beta-amyloid accumulation, oxidative stress and mitochondrial dysfunction. However, the effects of genetic mutation of AD on oxidative status and mitochondrial manganese superoxide dismutase (MnSOD) production during neuronal development are unclear. To investigate the consequences of genetic mutation of AD on oxidative damages and production of MnSOD during neuronal development, we used primary neurons from new born wild-type (WT/WT) and amyloid precursor protein (APP) (NLh/NLh) and presenilin 1 (PS1) (P264L) knock-in mice (APP/PS1) which incorporated humanized mutations in the genome.
View Article and Find Full Text PDFNeonates do not respond to thymus-independent (TI) antigens (Ag), making them vulnerable to infection with encapsulated bacteria. The antibody (Ab) response of adult and neonatal B cells to TI Ag requires certain cytokines, which are provided by T cells or macrophages (MPhi). Lipopolysaccharide (LPS) failed to induce neonatal MPhi to produce interleukin (IL)-1beta and tumor necrosis factor alpha (TNF-alpha) mRNA and to secrete IL-1beta, IL-12, and TNF-alpha.
View Article and Find Full Text PDF