Publications by authors named "I Dusanter-Fourt"

Transcription factor Forkhead box P1 (FOXP1) belongs to the same protein family as the FOXOs that are well-known regulators of murine hematopoietic stem progenitor cell (HSPC) maintenance via dampening oxidative stress. FOXP1 and FOXOs can play opposite, or similar, roles depending on cell context; they can crossregulate each other's expression. In a previous study, we have shown that FOXP1 contributes to healthy human HSPC and acute myeloid leukemia (AML) cell growth.

View Article and Find Full Text PDF

Blood platelets are essential for controlling hemostasis. They are released by megakaryocytes (MKs) located in the bone marrow, upon extension of cytoplasmic protrusions into the lumen of bone marrow sinusoids. Their number increases in postpulmonary capillaries, suggesting a role for oxygen gradient in thrombopoiesis (ie, platelet biogenesis).

View Article and Find Full Text PDF

The gene CXXC5, encoding a Retinoid-Inducible Nuclear Factor (RINF), is located within a region at 5q31.2 commonly deleted in myelodysplastic syndrome (MDS) and adult acute myeloid leukemia (AML). RINF may act as an epigenetic regulator and has been proposed as a tumor suppressor in hematopoietic malignancies.

View Article and Find Full Text PDF

In ribosomopathies, the Diamond-Blackfan anemia (DBA) or 5q- syndrome, ribosomal protein (RP) genes are affected by mutation or deletion, resulting in bone marrow erythroid hypoplasia. Unbalanced production of ribosomal subunits leading to a limited ribosome cellular content regulates translation at the expense of the master erythroid transcription factor GATA1. In RPS14-deficient cells mimicking 5q- syndrome erythroid defects, we show that the transcript length, codon bias of the coding sequence (CDS) and 3’UTR (untranslated region) structure are the key determinants of translation.

View Article and Find Full Text PDF
Article Synopsis
  • HIV-1 needs help from specific immune cells called CD4+ T cells to make more viruses, but it can only do this in activated ones, not the resting ones.
  • When researchers blocked a protein called FOXO1, which controls T cell functions, it made resting T cells act like they were activated and allowed HIV-1 to infect them.
  • This blockage also woke up hidden HIV-1 viruses in T cells, suggesting that using drugs to inhibit FOXO1 might help clear out the virus from the body.
View Article and Find Full Text PDF