Polymer-stabilised liquid crystals (PSLCs) have recently been used to maintain the focal conic domains (FCDs) typical of the smectic A phase in the nematic phase for smart window applications. The newly discovered twist-bend nematic phase of bent-shaped dimers also exhibits FCDs due to its pseudo-layered structure. The variety of topological defects in the N phase is arguably even greater than in the smectic A phase, but the N phase is often metastable and usually crystallises at room temperature, which hinders its use in electro-optical applications.
View Article and Find Full Text PDFBottom-up strategies for the production of well-defined nanostructures often rely on the self-assembly of anisotropic colloidal particles (nanowires and nanosheets). These building blocks can be obtained by delamination in a solvent of low-dimensionality crystallites. To optimize particle availability, determination of the delamination mechanism and the different organization stages of anisotropic particles in dispersion is essential.
View Article and Find Full Text PDFAlthough the existence of the twist-bend (N) and splay-bend (N) nematic phases was predicted long ago, only the former has as yet been observed experimentally, whereas the latter remains elusive. This is especially disappointing because the N nematic is promising for applications in electro-optic devices. By applying an electric field to a planar cell filled with the compound CB7CB, we have found an N-N phase transition using birefringence measurements.
View Article and Find Full Text PDFWe studied the paranematic ordering induced by a polymer network in the isotropic phase of a liquid crystal (LC) that occurs in polymer-stabilized cells with bend configuration of the LC director (π cells) fabricated via photopolymerization of photoreactive monomer RM 82 added in small concentrations (3-5 wt %) to a nematic LC [4-cyano-4'-pentylbiphenyl (5CB)] when low voltage was applied across the cell. The polymer network formed in the nematic phase of the LC consists of fine fibrils that are aligned along the LC director and thus mirror the bend deformation of the LC at the time of polymerization. When heated to temperatures above the nematic-to-isotropic (N-I) phase transition such highly ordered polymer network anchors LC molecules providing ordering of the LC around the fibrils which results in unusually high optical retardation of the cell, R_{cell}.
View Article and Find Full Text PDFZinc-blende CdSe semiconducting nanoplatelets (NPL) show outstanding quantum confinement properties thanks to their small, atomically-controlled, thickness. For example, they display extremely sharp absorption peaks and ultra-fast recombination rates that make them very interesting objects for optoelectronic applications. However, the presence of a ground-state electric dipole for these nanoparticles has not yet been investigated.
View Article and Find Full Text PDF