Publications by authors named "I Delvendahl"

Article Synopsis
  • Researchers developed a new genetically encoded voltage indicator (GEVI) called ASAP5, which offers improved detection of excitatory postsynaptic potentials (EPSPs) and action potentials (APs) with better signal quality compared to previous indicators.
  • ASAP5 was able to detect both spiking and subthreshold neuronal activities in real-time, showing its effectiveness in both animal models and cultured human neurons, even capturing small EPSPs of about 1-mV.
  • The study revealed that EPSP amplitudes decrease as they move away from the source, with further implications for using voltage imaging in studying neuronal dysfunction related to diseases, including those affecting human neurons.
View Article and Find Full Text PDF

Human cellular models of neurodegeneration require reproducibility and longevity, which is necessary for simulating age-dependent diseases. Such systems are particularly needed for TDP-43 proteinopathies, which involve human-specific mechanisms that cannot be directly studied in animal models. Here, to explore the emergence and consequences of TDP-43 pathologies, we generated induced pluripotent stem cell-derived, colony morphology neural stem cells (iCoMoNSCs) via manual selection of neural precursors.

View Article and Find Full Text PDF

Bayesian Active Learning (BAL) is an efficient framework for learning the parameters of a model, in which input stimuli are selected to maximize the mutual information between the observations and the unknown parameters. However, the applicability of BAL to experiments is limited as it requires performing high-dimensional integrations and optimizations in real time. Current methods are either too time consuming, or only applicable to specific models.

View Article and Find Full Text PDF

Pathogenic heterozygous variants in SCN2A, which encodes the neuronal sodium channel NaV1.2, cause different types of epilepsy or intellectual disability (ID)/autism without seizures. Previous studies using mouse models or heterologous systems suggest that NaV1.

View Article and Find Full Text PDF