Publications by authors named "I Del Rosal"

Synthesis of cerium yldiide complexes and their reactivity with CO is demonstrated. In the case of the sulphur-tethered yldiide, the ketenyl complex is formed with release of PPh, while PhPCCO is formed along with a sulfinato ligand in the case of the tosyl-substituted yldiide. Computational analysis shows that this diverging reactivity is due to the stability of the two isomers in the first step of each mechanism.

View Article and Find Full Text PDF

The synthesis of actinide tetrarhenate complexes completes a series of iridate, osmate, and rhenate polyhydrides, allowing for structural and bonding comparisons to be made. Computational studies examine the bonding interactions, particularly between metals, in these complexes. Several factors─including metal oxidation state, coordination number, and dispersion effects─affect metal-metal distances and covalency in these actinide tetrametallates.

View Article and Find Full Text PDF

We report the synthesis of a heterobimetallic U(III)-Ir species which reacts with CS to form the novel ethanetetrathiolate fragment hydride insertion and C-C coupling. Computational studies suggest the formation of a radical intermediate, which may couple with another equivalent to form the final product.

View Article and Find Full Text PDF

Correction for 'Supramolecular nanocapsules as two-fold stabilizers of outer-cavity sub-nanometric Ru NPs and inner-cavity ultra-small Ru clusters' by Ernest Ubasart , , 2022, , 607-615, https://doi.org/10.1039/D1NH00677K.

View Article and Find Full Text PDF

A novel Ta/Os heterobimetallic complex, [Ta(CHBu)(μ-H)OsCp*], 2, is prepared by protonolysis of Ta(CHBu)(CHBu) with Cp*OsH. Treatment of 2 and its iridium analogue [Ta(CHBu)(μ-H)IrCp*], 1, with CO under mild conditions reveal the efficient cleavage of CO, driven by the formation of a tantalum oxo species in conjunction with CO transfer to the osmium or iridium fragments, to form Cp*Ir(CO)H and Cp*Os(CO)H, respectively. This bimetallic reactivity diverges from more classical CO insertion into metal-X (X = metal, hydride, alkyl) bonds.

View Article and Find Full Text PDF