The fundamental structure of all organic electronic devices is a stack of thin layers sandwiched between electrodes, with precise intralayer morphology and interlayer interactions. Solution processing multilayers with little to no intermixing is, however, technically challenging and often incompatible with continuous roll-to-roll, high-speed manufacturing. Here, an overview of a recently developed methodology for self-generation of interlayers positioned between the active layer and metal contact is presented.
View Article and Find Full Text PDFAberrant activation of matrix metalloproteinases (MMPs) is a common feature of pathological cascades observed in diverse disorders, such as cancer, fibrosis, immune dysregulation, and neurodegenerative diseases. MMP-9, in particular, is highly dynamically regulated in several pathological processes. Development of MMP inhibitors has therefore been an attractive strategy for therapeutic intervention.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2017
Migration of additives to organic/metal interfaces can be used to self-generate interlayers in organic electronic devices. To generalize this approach for various additives, metals, and organic electronic devices it is first necessary to study the dynamics of additive migration from the bulk to the top organic/metal interface. In this study, we focus on a known cathode interlayer material, polyethylene glycol (PEG), as additive in P3HT:PCBM blends and study its migration to the blend/Al interface during metal deposition and its effect on organic solar cell (OSC) performance.
View Article and Find Full Text PDFFlexible and stretchable power sources represent a key technology for the realization of wearable electronics. Developing flexible and stretchable batteries with mechanical endurance that is on par with commercial standards and offer compliance while retaining safety remains a significant challenge. We present a unique approach that demonstrates mechanically robust, intrinsically safe silver-zinc batteries.
View Article and Find Full Text PDFAdditive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components-inductors, capacitors, and resistors-perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications.
View Article and Find Full Text PDF