Publications by authors named "I Dancus"

With the advance of high power laser systems, there is an increasing need to dim the corresponding light field power over larger dynamic ranges. The usual means to control the attenuation of directed light use optical filters or coatings with tailored reflectance and transmittance properties. They do not provide the variability that is often required in experiments.

View Article and Find Full Text PDF

The European Strategy Forum on Research Infrastructures (ESFRI) has selected in 2006 a proposal based on ultra-intense laser fields with intensities reaching up to 10-10 W cm called 'ELI' for Extreme Light Infrastructure. The construction of a large-scale laser-centred, distributed pan-European research infrastructure, involving beyond the state-of-the-art ultra-short and ultra-intense laser technologies, received the approval for funding in 2011-2012. The three pillars of the ELI facility are being built in Czech Republic, Hungary and Romania.

View Article and Find Full Text PDF

In this paper we are introducing a new single shot method for measuring the nonlinear refractive index of materials in a simple interferometric pump-probe configuration. The theoretical model proposed for extracting the nonlinear refractive index from the experimental fringe pattern and the experimental configuration are presented and discussed. The results obtained by this method are in good agreement with that obtained on the same sample using the conventional Z-scan method.

View Article and Find Full Text PDF

In this work, we report on an experimental investigation of the nonlinear optical properties near the first electronic resonance of thiol-capped CdTe quantum dots (QDs) being in the strong confinement regime. Using a cw laser excitation in a Z-scan experimental setup, we show the presence of saturated Kerr-type nonlinear optical properties of the QDs, at low intensity levels. The large optical nonlinearity and the control of the linear and nonlinear optical properties by the size of the QDs are of special interest for applications in integrated nanophotonic devices.

View Article and Find Full Text PDF