Biological age is a personalized measure of the health status of an organism, organ, or system, as opposed to simply accounting for chronological age. To date, there have been known attempts to create estimators of biological age based on various biomedical data. In this work, we focused on developing an approach for assessing heart biological age using echocardiographic data.
View Article and Find Full Text PDFPrevious studies examining the molecular and genetic basis of cognitive impairment, particularly in cohorts of long-living adults, have mainly focused on associations at the genome or transcriptome level. Dozens of significant dementia-associated genes have been identified, including APOE, APOC1, and TOMM40. However, most of these studies did not consider the intergenic interactions and functional gene modules involved in cognitive function, nor did they assess the metabolic changes in individual brain regions.
View Article and Find Full Text PDFThe expression of the gene of pattern recognition receptor TLR2, proinflammatory cytokine IL-1β, and anti-inflammatory cytokine IL-10 was analyzed in the peripheral blood of nonagenarians (n=219; mean age 92.1 years, 77 men and 142 women) in comparison with healthy young donors (n=24; mean age 22.5 years, 16 women and 8 men).
View Article and Find Full Text PDFAging is a natural process with varying effects. As we grow older, our bodies become more susceptible to aging-associated diseases. These diseases, individually or collectively, lead to the formation of distinct aging phenotypes.
View Article and Find Full Text PDFEpigenetic aging is a hot topic in the field of aging research. The present study estimated epigenetic age in long-lived individuals, who are currently actively being studied worldwide as an example of successful aging due to their longevity. We used Bekaert's blood-based age prediction model to estimate the epigenetic age of 50 conditionally "healthy" and 45 frail long-livers over 90 years old.
View Article and Find Full Text PDF