A microfluidic paper-based analytical device (μPAD) utilizing gas-diffusion separation and solid-phase reduction was developed for the first time for the determination of both ammonium and nitrate, which are the dominant inorganic nitrogen species in environmental waters. The device consists of 3 filter paper layers accommodating the sample, reagent and detection zones. The reagent zone is separated from the detection zone by a semipermeable hydrophobic membrane and acts as a solid-phase reactor where nitrate is reduced to ammonia by Devarda's alloy microparticles, integrated into a μPAD for the first time.
View Article and Find Full Text PDFA biofouling resistant passive sampler for ammonia, where the semi-permeable barrier is a microporous hydrophobic gas-diffusion membrane, has been developed for the first time and successfully applied to determine the time-weighted average concentration of ammonia in estuarine and coastal waters for 7 days. Strategies to control biofouling of the membrane were investigated by covering it with either a copper mesh or a silver nanoparticle functionalised cotton mesh, with the former approach showing better performance. The effects of temperature, pH and salinity on the accumulation of ammonia in the newly developed passive sampler were studied and the first two parameters were found to influence it significantly.
View Article and Find Full Text PDFAn easy-to-use, portable 3D microfluidic paper-based analytical device (μPAD) for the determination of total ammonia (i.e., ammonia + ammonium) in freshwaters is described.
View Article and Find Full Text PDF