A single-domain nanomagnet is a basic example of a system where relaxation from high to low energy is probabilistic in nature even when thermal fluctuations are neglected. The reason is the presence of multiple stable states combined with extreme sensitivity to initial conditions. It is demonstrated that for this system the probability of relaxing from high energies to one of the stable magnetization orientations can be tuned to any desired value between 0 and 1 by applying a small transverse magnetic field of appropriate amplitude.
View Article and Find Full Text PDFThe SERS phenomenon was studied using a large set of silver nanocube dimers programmed to self-assemble in preset locations of a patterned substrate. This SERS substrate made it possible to demonstrate the dependence of the SERS enhancement on the geometry of the silver nanocube dimers and to quantify the dispersion in the SERS enhancement obtained in an ensemble of dimers. In addition to the effects of the gap distance of the dimer and the orientation of the dimer axis relative to the laser polarization on SERS enhancement, the data reveal an interesting dependence of the site-to-site variations of the enhancement on the relative orientation of the nanocubes in the dimer.
View Article and Find Full Text PDFA novel theoretical approach to the dynamics analysis of excitation and dephasing of plasmon modes in nanoparticles is presented. This approach is based on the biorthogonal plasmon mode expansion, and it leads to the predictions of time dynamics of excitation of specific plasmon modes as well as their steady state amplitude and their decay. Temporal characteristics of plasmon modes in nanoparticles are expressed in terms of their shapes, permittivity dispersion relations, and excitation conditions.
View Article and Find Full Text PDFA novel theoretical approach to magnetization dynamics driven by spin-polarized currents is presented. Complete stability diagrams are obtained for the case where spin torques and external magnetic fields are simultaneously present. Quantitative predictions are made for the critical currents and fields inducing magnetization switching, for the amplitude and frequency of magnetization self-oscillations, and for the conditions leading to hysteretic transitions between self-oscillations and stationary states.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2004
A method for the analysis of spectral densities of hysteretic nonlinearities driven by diffusion processes is presented. This method is based on the Preisach formalism for the description of hysteresis and the mathematical machinery of diffusion processes on graphs. The calculations are appreciably simplified by the introduction of the "effective" distribution function.
View Article and Find Full Text PDF