There is interest in the production of non-reducing carbohydrates due to their potential application in various industrial fields, particularly the food industry. In this paper, we describe the development of an immobilised cell bioprocess for the synthesis of non-reducing maltodextrins at high temperatures. The trehalosyl-dextrins-forming enzyme (TDFE) isolated from the thermoacidophilic archaeon Sulfolobus solfataricus (strain MT4), was recently expressed at high yields in Escherichia coli (strain Rb-791).
View Article and Find Full Text PDFIn recent years a number of hyperthermophilic micro-organisms of Sulfolobales have been found to produce trehalose from starch and dextrins. In our laboratory genes encoding the trehalosyl dextrin forming enzyme (TDFE) and the trehalose forming enzyme (TFE) of S. solfataricus MT4 have been cloned and expressed in E.
View Article and Find Full Text PDFTrehalose (alpha-D-glucopyranosyl alpha-D-glucopyranoside) is a unique sugar capable of protecting biomolecules against environmental stress. It is a stable, colorless, odor-free and non-reducing disaccharide, and is widespread in nature. Trehalose has a key role in the survival of some plants and insects, termed anhydrobionts, in harsh environments, even when most of their water body is removed.
View Article and Find Full Text PDFThe enzymatic production of trehalose from dextrins was studied as a series reaction in a packed bed reactor containing immobilized recombinant Escherichia coli cells, expressing either the Sulfolobus solfataricus (strain MT4) trehalosyl-dextrin forming enzyme (TDFE) or the trehalose-forming enzyme (TFE). The cells, subjected to thermal treatments to increase cell permeability and to inactivate the unwanted host proteins, were entrapped separately or together in a calcium alginate polymeric matrix. The biocatalyst beads were used to pack a tubular glass reactor that was operated in a recycle mode.
View Article and Find Full Text PDFA new type of microfiltration (MF) bioreactor, developed in our laboratory, was investigated for use in improving efficiency of the production of extremophilic enzymes. In spite of the difficulties in cultivating hyperthermophiles, we achieved, in 300 h fermentation, more than 38 g/l dry weight of Sulfolobus solfataricus using a MF technique, and we demonstrated that the activity of alcohol dehydrogenase (ADH), as the reporter enzyme, was not affected by cell density. However, hyperthermophile cultivation is difficult to scale up because of evaporation and the very low growth rate.
View Article and Find Full Text PDF