Publications by authors named "I D Dietzel"

Growth cones of oligodendrocyte progenitor cells (OPCs) are challenging to investigate with conventional light microscopy due to their small size. Especially substructures such as filopodia, lamellipodia and their underlying cytoskeleton are difficult to resolve with diffraction limited microscopy. Light microscopy techniques, which surpass the diffraction limit such as stimulated emission depletion microscopy, often require expensive setups and specially trained personnel rendering them inaccessible to smaller research groups.

View Article and Find Full Text PDF

Mice lacking functional thyroid follicular cells, mice, die early postnatally, making them suitable models for extreme hypothyroidism. We have previously obtained evidence in postnatal rat neurons, that a down-regulation of Na-current density could explain the reduced excitability of the nervous system in hypothyroidism. If such a mechanism underlies the development of coma and death in severe hypothyroidism, mice should show deficits in the expression of Na currents and potentially also in the expression of Na/K-ATPases, which are necessary to maintain low intracellular Na levels.

View Article and Find Full Text PDF

Cell culture studies offer the unique possibility to investigate the influence of pharmacological treatments with quantified dosages applied for defined time durations on survival, morphological maturation, protein expression and function as well as the mutual interaction of various cell types. Cultures obtained from postnatal rat brain contain a substantial number of glial cells that further proliferate with time in culture leading to an overgrowth of neurons with glia, especially astrocytes and microglia. A well-established method to decrease glial proliferation in vitro is to apply low concentrations of cytosine arabinoside (AraC).

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative disease associated with loss or dysfunction of dopaminergic neurons located in the substantia nigra (SN), and there is no cure available. An emerging new approach for treatment is to transplant human induced dopaminergic neurons directly into the denervated striatal brain target region. Unfortunately, neurons grafted into the substantia nigra are unable to grow axons into the striatum and thus do not allow recovery of the original connectivity.

View Article and Find Full Text PDF

The sodium potassium ATPase (Na/K ATPase) is essential for the maintenance of a low intracellular Na and a high intracellular K concentration. Loss of function of the Na/K ATPase due to mutations in Na/K ATPase genes, anoxic conditions, depletion of ATP or inhibition of the Na/K ATPase function using cardiac glycosides such as digitalis, causes a depolarization of the resting membrane potential. While in non-excitable cells, the uptake of glucose and amino acids is decreased if the function of the Na/K ATPase is compromised, in excitable cells the symptoms range from local hyper-excitability to inactivating depolarization.

View Article and Find Full Text PDF