2D boron nitride (2D-BN) was synthesized by gas-source molecular beam epitaxy on polycrystalline and monocrystalline Ni substrates using gaseous borazine and active nitrogen generated by a remote plasma source. The excess of nitrogen atoms allows to overcome the thickness self-limitation active on Ni when using borazine alone. The nucleation density and the shape of the 2D-BN domains are clearly related to the Ni substrate preparation and to the growth parameters.
View Article and Find Full Text PDFNew angle-resolved photoelectron spectroscopy (ARPES) data, recorded at several different photon energies from the Si(111)(7 × 7) surface, show that the well-known S1 and S2 surface states that lie in the bulk band gap are localised at specific (adatom and rest atom) sites on the reconstructed surface. The variations in the photoemission intensity from these states as a function of polar and azimuthal emission angle, and incident photon energy, are not consistent with Fermi surface mapping but are well-described by calculations of the multiple elastic scattering in the final state. This localisation of the most shallowly bound S1 state is consistent with the lack of significant dispersion, with no evidence of Fermi surface crossing, implying that the surface is not, as has been previously proposed, metallic in character.
View Article and Find Full Text PDFUsing density functional theory (DFT) calculations, we examined the effects of substitutional doping on the formation of Cu vacancies in CuO(111). Upon replacing coordinatively unsaturated O with other elements (N, F, P, S, and Cl) and calculating the formation energies, we found that compared to the undoped surface, Cu vacancy formation is most favorable in the F-doped surface and least favorable in the N-doped CuO(111) surface. In addition, we found that in most cases, vacancy formation of the coordinatively saturated Cu has higher vacancy formation energy than coordinatively unsaturated Cu atoms.
View Article and Find Full Text PDFThe practical difficulties to use graphene in microelectronics and optoelectronics is that the available methods to grow graphene are not easily integrated in the mainstream technologies. A growth method that could overcome at least some of these problems is chemical vapour deposition (CVD) of graphene directly on semiconducting (Si or Ge) substrates. Here we report on the comparison of the CVD and molecular beam epitaxy (MBE) growth of graphene on the technologically relevant Ge(001)/Si(001) substrate from ethene (C2H4) precursor and describe the physical properties of the films as well as we discuss the surface reaction and diffusion processes that may be responsible for the observed behavior.
View Article and Find Full Text PDFBy mapping the low-energy electronic dynamics using angle resolved photoemission spectroscopy (ARPES), we have shed light on essential electronic characteristics of the (3 × 3) silicene phase on Ag(111) surfaces. In particular, our results show a silicene-derived band with a clear gap and linear energy-momentum dispersion near the Fermi level at the Γ symmetry point of the (3 × 3) phase at several distinctive Brillouin zones. Moreover, we have confirmed that the large buckling of ~0.
View Article and Find Full Text PDF