Atomic-scale magnetic moments in contact with superconductors host rich physics based on the emergence of Yu-Shiba-Rusinov (YSR) magnetic bound states within the superconducting condensate. Here, we focus on a magnetic bound state induced into Pb nanoislands by individual vanadyl phthalocyanine (VOPc) molecules deposited on the Pb surface. The VOPc molecule is characterized by a spin magnitude of 1/2 arising from a well-isolated singly occupied d -orbital and is a promising candidate for a molecular spin qubit with long coherence times.
View Article and Find Full Text PDFMuon spin relaxation (μSR) experiments on a single-molecule magnet enriched in different Dy isotopes detect unambiguously the slowing down of the zero field spin dynamics for the non-magnetic isotope. This occurs in the low temperature regime dominated by quantum tunnelling, in agreement with previous ac susceptibility investigations. In contrast to the latter, however, μSR is sensitive to all fluctuation modes affecting the lifetime of the spin levels.
View Article and Find Full Text PDFThe alteration of the properties of single-molecule magnets (SMMs) due to the interaction with metallic electrodes is detrimental to their employment in spintronic devices. Conversely, herein we show that the terbium(iii) bis-phthalocyaninato complex, TbPc, maintains its SMM behavior up to 9 K on a graphene/SiC(0001) substrate, making this alternative conductive layer highly promising for molecular spintronic applications.
View Article and Find Full Text PDFThe complexation between 2-ureido-4[1H]-pyrimidinone (UPy) and 2,7-diamido-1,8-naphthyridine (NaPy) is used to promote the mild chemisorption of a UPy-functionalized terbium(III) double decker system on a silicon surface. The adopted strategy allows the single-molecule magnet behavior of the system to be maintained unaltered on the surface.
View Article and Find Full Text PDFA challenge in molecular spintronics is to control the magnetic coupling between magnetic molecules and magnetic electrodes to build efficient devices. Here we show that the nature of the magnetic ion of anchored metal complexes highly impacts the exchange coupling of the molecules with magnetic substrates. Surface anchoring alters the magnetic anisotropy of the cobalt(II)-containing complex (Co(Pyipa)), and results in blocking of its magnetization due to the presence of a magnetic hysteresis loop.
View Article and Find Full Text PDF