Publications by authors named "I CALARESU"

The extracellular space (ECS) and its constituents play a crucial role in brain development, plasticity, circadian rhythm, and behavior, as well as brain diseases. Yet, since this compartment has an intricate geometry and nanoscale dimensions, its detailed exploration in live tissue has remained an unmet challenge. Here, we used a combination of single-nanoparticle tracking and super-resolution microscopy approaches to map the nanoscale dimensions of the ECS across the rodent hippocampus.

View Article and Find Full Text PDF

We present the design, fabrication, and characterization of an implantable neural interface based on anisotropic magnetoresistive (AMR) magnetic-field sensors that combine reduced size and high performance at body temperature. The sensors are based on LaSrMnO (LSMO) as a ferromagnetic material, whose epitaxial growth has been suitably engineered to get uniaxial anisotropy and large AMR output together with low noise even at low frequencies. The performance of LSMO sensors of different film thickness and at different temperatures close to 37 °C has to be explored to find an optimum sensitivity of ∼400%/T (with typical detectivity values of 2 nT·Hz at a frequency of 1 Hz and 0.

View Article and Find Full Text PDF

We provide evidence of a local synaptic nanoenvironment in the brain extracellular space (ECS) lying within 500 nm of postsynaptic densities. To reveal this brain compartment, we developed a correlative imaging approach dedicated to thick brain tissue based on single-particle tracking of individual fluorescent single wall carbon nanotubes (SWCNTs) in living samples and on speckle-based HiLo microscopy of synaptic labels. We show that the extracellular space around synapses bears specific properties in terms of morphology at the nanoscale and inner diffusivity.

View Article and Find Full Text PDF

Understanding neural physiopathology requires advances in nanotechnology-based interfaces, engineered to monitor the functional state of mammalian nervous cells. Such interfaces typically contain nanometer-size features for stimulation and recording as in cell-non-invasive extracellular microelectrode arrays. In such devices, it turns crucial to understand specific interactions of neural cells with physicochemical features of electrodes, which could be designed to optimize performance.

View Article and Find Full Text PDF

By preserving cell viability and three-dimensional localization, organotypic culture stands out among the newest frontiers of cell culture. It has been successfully employed for the study of diseases among which neoplasias, where tumoral cells take advantage of the surrounding stroma to promote their own proliferation and survival. Organotypic culture acquires major importance in the context of the immune system, whose cells cross-talk in a complex and dynamic fashion to elicit productive responses.

View Article and Find Full Text PDF