Publications by authors named "I Burghardt"

Geometric phases play a crucial role in diverse fields. In molecules, they appear when a reaction path encircles an intersection between adiabatic potential energy surfaces and the molecular wave function experiences quantum-mechanical interference effects. This intriguing effect, closely resembling the magnetic Aharonov-Bohm effect, crucially relies on the adiabatic description of the dynamics, and it is an open issue whether and how it persists in an exact quantum dynamical framework.

View Article and Find Full Text PDF

The excited-state dynamics of organic molecules, molecular aggregates, and donor-acceptor clusters is typically governed by the interplay of electronic excitations and, due to their flexibility and soft bonding, by the interaction with their vibrations. This interaction in these systems can be characterized by a few relevant electronic states that are coupled to numerous vibrational normal modes, encompassing a vast configurational space of the molecules. The full quantum simulation of these type of systems has been long dominated by the multiconfiguration time-dependent Hartree (MCTDH) approach and its multilayer variants, which are considered the gold standard in the presence of electron-vibration coupling with a large number of modes.

View Article and Find Full Text PDF

Fluorescence quenchers for application in DNA - like the BHQ family - tend to be large molecules which need to be attached, often post-synthetically, long linkers. In this study, we present two new iminothioindoxyl--nucleosidic quenchers which are very compact, feature a native backbone and can be introduced into DNA regular solid-phase synthesis. Especially with d as juxtaposed nucleobase, they have a defined location and orientation in a DNA duplex with minimal perturbation of the structure and hence interaction capabilities.

View Article and Find Full Text PDF

Carbon nanobelts feature intriguing photophysical properties, due to their high symmetry and structural rigidity. Here, we consider a (6,6) armchair carbon nanobelt, i.e.

View Article and Find Full Text PDF

The fate of the molecular geometric phase in an exact dynamical framework is investigated with the help of the exact factorization of the wave function and a recently proposed quantum hydrodynamical description of its dynamics. An instantaneous, gauge-invariant phase is introduced for arbitrary paths in nuclear configuration space in terms of hydrodynamical variables, and shown to reduce to the adiabatic geometric phase when the state is adiabatic and the path is closed. The evolution of the closed-path phase over time is shown to adhere to a Maxwell-Faraday induction law, with nonconservative forces arising from the electron dynamics that play the role of electromotive forces.

View Article and Find Full Text PDF