Magnetic focusing of a molecular beam formed from a rotationally cooled supersonic jet of HO seeded in argon is shown to yield water vapor highly enriched in the -HO nuclear spin isomer (NSI). Rotationally resolved resonance-enhanced multiphoton ionization time-of-flight mass spectrometry demonstrates that this methodology enables the preparation of a beam of water molecules enriched to >98% in the -HO NSI, that is, having an ortho-to-para ratio in excess of 50:1. The flux and quantum-state purity achieved through the methodology described herein could enable heterogeneous chemistry applications including the preparation of nuclear spin-polarized water adlayers, making nuclear magnetic resonance investigations amenable to surface science studies, as well as laboratory astrophysics investigations of NSI interconversion mechanisms and rates in ice and at its surface.
View Article and Find Full Text PDFA collision-induced dissociation study of hydrated protonated uracil (HO)UH clusters is reported. The mass-selected clusters collide with water molecules and rare gases at a controlled center of mass collision energy. From these measurements, absolute fragmentation cross sections and branching ratios are extracted as a function of the uracil hydration.
View Article and Find Full Text PDFProtonated water clusters have received a lot of attention as they offer tools to bridge the gap between molecular and bulk scales of water. However, their properties are still not fully understood and deserve further theoretical and experimental investigations. In this work, we simulate the caloric curves of protonated water clusters (HO)H (n = 20-23).
View Article and Find Full Text PDFRev Sci Instrum
April 2017
We present the design of a versatile gas aggregation source that allows producing molecular beams of charged clusters containing a controlled amount of chosen impurities. Several examples of clusters production using this source characterized by time of flight mass spectrometry are presented here. We demonstrate the source ability to produce homogeneous clusters, such as pure protonated water and alcohol clusters, as well as inhomogeneous ones such as water clusters containing a few units of uracil, glycine, sulfuric acid, or pyrene.
View Article and Find Full Text PDFAbsolute attachment cross sections of single molecules M (M = water, ethanol, or methanol) onto positively charged mass-selected clusters XnH(+) (X = water, ethanol, or methanol) were measured for cluster sizes ranging from tens to hundreds of molecules and center-of-mass collision energies varying from 0.1 to ∼1 eV. The attachment cross sections, which converge as expected toward geometrical cross sections at large cluster sizes, are systematically and noticeably lower than geometrical cross sections at small sizes.
View Article and Find Full Text PDF