Publications by authors named "I Boutelet"

Aldosterone, produced by the adrenals and under the control of plasma angiotensin and potassium levels, regulates hydromineral homeostasis and blood pressure. Here we report that the neuropeptide substance P (SP) released by intraadrenal nerve fibres, stimulates aldosterone secretion via binding to neurokinin type 1 receptors (NK1R) expressed by aldosterone-producing adrenocortical cells. The action of SP is mediated by the extracellular signal-regulated kinase pathway and involves upregulation of steroidogenic enzymes.

View Article and Find Full Text PDF

Resident adrenal mast cells have been shown to activate aldosterone secretion in rat and man. Especially, mast cell proliferation has been observed in adrenal tissues from patients with aldosterone-producing adrenocortical adenoma. In the present study, we show that the activity of adrenal mast cells is stimulated by low-sodium diet and correlates with aldosterone synthesis in C57BL/6 and BALB/c mice.

View Article and Find Full Text PDF

Primary pigmented nodular adrenocortical disease (PPNAD) is a rare cause of ACTH-independent hypercortisolism. The disease is primarily caused by germline mutations of the protein kinase A (PKA) regulatory subunit 1A () gene, which induces constitutive activation of PKA in adrenocortical cells. Hypercortisolism is thought to result from PKA hyperactivity, but PPNAD tissues exhibit features of neuroendocrine differentiation, which may lead to stimulation of steroidogenesis by abnormally expressed neurotransmitters.

View Article and Find Full Text PDF

Context: Adrenal mast cells can stimulate aldosterone secretion through the local release of serotonin (5-HT) and activation of the 5-HT4 receptor (5-HT4). In aldosterone-producing adenomas (APAs), 5-HT4 receptor is overexpressed and the administration of 5-HT4 receptor agonists to patients with APA increases plasma aldosterone levels. These data and the well-documented role of mast cells in tumorigenesis suggest that mast cells may be involved in the pathophysiology of APA.

View Article and Find Full Text PDF

Background: Bilateral macronodular adrenal hyperplasia is a rare cause of primary adrenal Cushing's syndrome. In this form of hyperplasia, hypersecretion of cortisol suppresses the release of corticotropin by pituitary corticotrophs, which results in low plasma corticotropin levels. Thus, the disease has been termed corticotropin-independent macronodular adrenal hyperplasia.

View Article and Find Full Text PDF