Effective population size () is one of the most important parameters in evolutionary biology, as it is linked to the long-term survival capability of species. Therefore, greatly interests conservation geneticists, but it is also very relevant to policymakers, managers, and conservation practitioners. Molecular methods to estimate rely on various assumptions, including no immigration, panmixia, random sampling, absence of spatial genetic structure, and/or mutation-drift equilibrium.
View Article and Find Full Text PDFPolymorphism for immune functions can explain significant variation in health and reproductive success within species. Drastic loss in genetic diversity at such loci constitutes an extinction risk and should be monitored in species of conservation concern. However, effective implementations of genome-wide immune polymorphism sets into high-throughput genotyping assays are scarce.
View Article and Find Full Text PDFMany studies document negative inbreeding effects on individuals, and conservation efforts to preserve rare species routinely employ strategies to reduce inbreeding. Despite this, there are few clear examples in nature of inbreeding decreasing the growth rates of populations, and the extent of population-level effects of inbreeding in the wild remains controversial. Here, we take advantage of a long-term dataset of 26 reintroduced Alpine ibex (Capra ibex ibex) populations spanning nearly 100 years to show that inbreeding substantially reduced per capita population growth rates, particularly for populations in harsher environments.
View Article and Find Full Text PDFRestoration of lost species ranges to their native distribution is key for the survival of endangered species. However, reintroductions often fail and long-term genetic consequences are poorly understood. Alpine ibex () are wild goats that recovered from <100 individuals to ~50,000 within a century by population reintroductions.
View Article and Find Full Text PDFBackground: Genetic differentiation in historically connected populations could be the result of genetic drift or adaptation, two processes that imply a need for differing strategies in population management. The aim of our study was to use neutral genetic markers to characterize C. pyrenaica populations genetically and examine results in terms of (i) demographic history, (ii) subspecific classification and (iii) the implications for the management of Iberian ibex.
View Article and Find Full Text PDF