Publications by authors named "I Berdakin"

Many self-propelled microorganisms are attracted to surfaces. This makes their dynamics in restricted geometries very different from that observed in the bulk. Swimming along walls is beneficial for directing and sorting cells, but may be detrimental if homogeneous populations are desired, such as in counting microchambers.

View Article and Find Full Text PDF

The guidance of human sperm cells under confinement in quasi-2D microchambers is investigated using a purely physical method to control their distribution. Transport property measurements and simulations are performed with diluted sperm populations, for which effects of geometrical guidance and concentration are studied in detail. In particular, a trapping transition at convex angular wall features is identified and analyzed.

View Article and Find Full Text PDF

It has been shown that a nanoliter chamber separated by a wall of asymmetric obstacles can lead to an inhomogeneous distribution of self-propelled microorganisms. Although it is well established that this rectification effect arises from the interaction between the swimmers and the noncentrosymmetric pillars, here we demonstrate numerically that its efficiency is strongly dependent on the detailed dynamics of the individual microorganism. In particular, for the case of run-and-tumble dynamics, the distribution of run lengths, the rotational diffusion, and the partial preservation of run orientation memory through a tumble are important factors when computing the rectification efficiency.

View Article and Find Full Text PDF