Publications by authors named "I Ben-Batalla"

Low-dose antiangiogenic therapies have demonstrated the ability to enhance normalization of tumor vessels, consequently improving hypoxia levels, drug delivery, and promoting anticancer immune responses. Mast cells have been identified as contributors to resistance against antiangiogenic therapy and facilitators of abnormal neoangiogenesis. In this study, we demonstrate that by simultaneously targeting intratumoral mast cells with Imatinib and administering low-dose anti-VEGFR2 therapy, antitumor efficacy can be enhanced in preclinical models.

View Article and Find Full Text PDF

The TAM (TYRO3, MERTK, and AXL) family of receptor tyrosine kinases are pleiotropic regulators of adult tissue homeostasis maintaining organ integrity and self-renewal. Disruption of their homeostatic balance fosters pathological conditions like autoinflammatory or degenerative diseases including rheumatoid arthritis, lupus erythematodes, or liver fibrosis. Moreover, TAM receptors exhibit prominent cell-transforming properties, promoting tumor progression, metastasis, and therapy resistance in various cancer entities.

View Article and Find Full Text PDF

The fine equilibrium of bone homeostasis is maintained by bone-forming osteoblasts and bone-resorbing osteoclasts. Here, we show that TAM receptors MERTK and TYRO3 exert reciprocal effects in osteoblast biology: Osteoblast-targeted deletion of MERTK promotes increased bone mass in healthy mice and mice with cancer-induced bone loss, whereas knockout of TYRO3 in osteoblasts shows the opposite phenotype. Functionally, the interaction of MERTK with its ligand PROS1 negatively regulates osteoblast differentiation via inducing the VAV2-RHOA-ROCK axis leading to increased cell contractility and motility while TYRO3 antagonizes this effect.

View Article and Find Full Text PDF

Despite enormous efforts to improve therapeutic options, pancreatic cancer remains a fatal disease and is expected to become the second leading cause of cancer-related deaths in the next decade. Previous research identified lipid metabolic pathways to be highly enriched in pancreatic ductal adenocarcinoma (PDAC) cells. Thereby, cholesterol uptake and synthesis promotes growth advantage to and chemotherapy resistance for PDAC tumor cells.

View Article and Find Full Text PDF