Publications by authors named "I Bazwinsky"

Melatonin influences the second messenger cyclic guanosine 3',5'-monophosphate (cGMP) signaling pathway in pancreatic beta-cells via a receptor-mediated mechanism. In the present study, it was determined how the regulation of cGMP concentrations by melatonin proceeds. The results provide evidence that melatonin acts via the soluble guanylate cyclase (sGC), as molecular investigations demonstrated that long-term incubation with melatonin significantly reduced the expression levels of the sGC mRNA in rat insulinoma beta-cells (INS1) cells, whereas mRNA expression of membrane guanylate cyclases was unaffected.

View Article and Find Full Text PDF

It is well-documented that melatonin influences insulin secretion. The effects are mediated by specific, high-affinity, pertussis-toxin-sensitive, G protein-coupled membrane receptors (MT(1) as well MT(2)), which are present in both the pancreatic tissue and islets of rats and humans, as well as in rat insulinoma cells (INS1). Via the Gi-protein-adenylatecyclase-3',5'-cyclic adenosine monophosphate (cAMP) and, possibly, the guanylatecyclase-cGMP pathways, melatonin decreases insulin secretion, whereas, by activating the Gq-protein-phospholipase C-IP(3) pathway, it has the opposite effect.

View Article and Find Full Text PDF

Antibodies directed against calcium-binding proteins (CaBPs) parvalbumin, calbindin-D28k and calretinin were used as neuronal markers to identify and characterize different principal cell types in the mammalian cochlear nucleus. For this purpose, double immunofluorescence labeling and the combination of CaBP-labeling with pan-neuronal markers were applied to analyze the CaBPs distribution in neurons of the cochlear nucleus (CN) of the Mongolian gerbil (Meriones unguiculatus) and the gray short-tailed opossum (Monodelphis domestica). Despite of the fact, that these two mammalian species are not closely related, principal cell types in the CN of the two species showed many corresponding morphological features and similarities in immunolabeling of the CaBPs.

View Article and Find Full Text PDF

Alterations in glucose sensing are well-known in both humans and animal models of non-insulin-dependent diabetes mellitus. However, the circadian- and age-dependent expression of glucose-sensing genes has not previously been investigated in vivo. In the present paper, we show a progressive loss of beta-cell GLUT2-mRNA and, by immunocytochemistry, a gain of soluble, cytoplasmic GLUT2-protein in Goto-Kakizaki rat islets.

View Article and Find Full Text PDF

The aim of the present study was to determine the existence of melatonin membrane receptors and to examine the mRNA expression of nuclear orphan receptors in human pancreatic tissue, in an effort to explain differences between type 2 diabetic and metabolically healthy patients. Molecular and immunocytochemical investigations established the presence of the melatonin membrane receptors MT1 and MT2 in human pancreatic tissue and, notably, also in the islets of Langerhans. Results of a calculation model to determine mRNA expression ratios, as well as subjective analysis of immunoreactions, showed elevated MT1 receptor expression in comparison with MT2 expression.

View Article and Find Full Text PDF