The ionome represents elemental composition in plant tissues and can be an indicator of nutrient status as well as overall plant performance. Thus, identifying genetic determinants governing elemental uptake and storage is an important goal for breeding and engineering biomass feedstocks with improved performance. In this study, we coupled high-throughput ionome characterization of leaf tissues with high-resolution genome-wide association studies (GWAS) to uncover genetic loci that modulate ionomic composition in leaves of poplar ().
View Article and Find Full Text PDFThis strategic plan summarizes the major accomplishments achieved in the last quinquennial by the soybean [Glycine max (L.) Merr.] genetics and genomics research community and outlines key priorities for the next 5 years (2024-2028).
View Article and Find Full Text PDFWhile biotic interactions often impose selection, species and populations vary in whether they are locally adapted to biotic interactions. Evolutionary theory predicts that environmental conditions drive this variable local adaptation by altering the fitness impacts of species interactions. To investigate the influence of an environmental gradient on adaptation between a plant and its associated rhizosphere biota, we cross-combined teosinte (Zea mays ssp.
View Article and Find Full Text PDFAtmospheric rivers (ARs) reaching high-latitudes in summer contribute to the majority of climatological poleward water vapor transport into the Arctic. This transport has exhibited long term changes over the past decades, which cannot be entirely explained by anthropogenic forcing according to ensemble model responses. Here, through observational analyses and model experiments in which winds are adjusted to match observations, we demonstrate that low-frequency, large-scale circulation changes in the Arctic play a decisive role in regulating AR activity and thus inducing the recent upsurge of this activity in the region.
View Article and Find Full Text PDFIntroduction: is a promising cellulosic feedstock crop for bioenergy due to its high biomass yields. However, early growth phases of sorghum are sensitive to cold stress, limiting its planting in temperate environments. Cold adaptability is crucial for cultivating bioenergy and grain sorghum at higher latitudes and elevations, or for extending the growing season.
View Article and Find Full Text PDF