This study investigates the quasi-static and dynamic compression performance of a newly designed stacked pyramidal lattice (SPL) structure composed of struts that resemble I-beams. These novel lattice structures are 3D-printed considering three different stacking sequences, and their stiffness, strength, and energy absorption properties are experimentally assessed through low-velocity impact (1.54 m/s) and quasi-static compression tests.
View Article and Find Full Text PDFThe challenges presented by sour environments rich in hydrogen sulfide (HS) underscore the necessity for a comprehensive understanding of material behavior under such conditions. The cracking susceptibility of metals and alloys used for subsurface equipment in downhole oil and gas exploration operations is particularly concerning. The NACE Double Cantilever Beam (DCB) test has emerged as a widely used quality assurance tool in the petroleum industry, leveraging fracture mechanics principles to assess the environment-assisted cracking (EAC) resistance of metals and alloys.
View Article and Find Full Text PDFThis study investigates the influence of square and hexagon tool pin profiles on the butt joint of AA7075-T6 plates through friction stir welding. In contrast to the AA7075-T6 base metal with a grain size of 32.736 μm, both square (4.
View Article and Find Full Text PDFThis study investigates the corrosion kinetics and crack propagation in buried transmission pipelines made of high-strength low alloy steel API X100. Despite its cost-effectiveness and ability to withstand high operating conditions without increasing pipe wall thickness, the corrosion kinetics in near-neutral pH environments for this steel grade is not fully understood. To address this gap, two numerical models were developed.
View Article and Find Full Text PDFThis study investigates the biomechanical performance of various dental materials when filled in different cavity designs and their effects on surrounding dental tissues. Finite element models of three infected teeth with different cavity designs, Class I (occlusal), Class II mesial-occlusal (MO), and Class II mesio-occluso-distal (MOD) were constructed. These cavities were filled with amalgam, composites (Young's moduli of 10, 14, 18, 22, and 26 GPa), and glass carbomer cement (GCC).
View Article and Find Full Text PDF