Zygotic and somatic embryogenesis in plants is a fascinating event that is finely regulated through the expression of a specific group of genes and dynamic levels of plant hormones whose concerted action determines the fate that specific cells follow towards zygotic or somatic embryo development. This work studied different stages of Capsicum chinense Jacq. zygotic and somatic embryogenesis.
View Article and Find Full Text PDFSomatic embryogenesis is a reliable system for plant regeneration, with biotechnological applications in trees, but the regulating mechanisms are largely unknown. Changes in cell wall mechanics controlled by methylesterification of pectins, mediated by pectin methylesterases (PMEs) and pectin methyl esterase inhibitors (PMEIs) underlie many developmental processes. Arabinogalactan proteins (AGPs) are highly glycosylated proteins located at the surface of plasma membranes, in cell walls, and in extracellular secretions, with key roles in a range of different processes.
View Article and Find Full Text PDFMicrospore embryogenesis is a powerful biotechnological tool that is very useful in crop breeding for the rapid production of haploid and double-haploid embryos and plants. In this in vitro system, the haploid microspore is reprogrammed by the application of specific stress treatments. A high level of cell death after the stress is a major factor that greatly reduces embryogenesis yield at its initial stages.
View Article and Find Full Text PDFOvule and seed development in plants has long fascinated the scientific community given the complex cell coordination implicated in these processes. These cell events are highly conserved but are not necessarily representative of all plants. In this study, with the aim of obtaining information regarding the cellular patterns that follow the usual development of the ovule and the zygotic embryo, we carried out an integral anatomical study of the Capsicum chinense Jacq.
View Article and Find Full Text PDFMicrospores are reprogrammed towards embryogenesis by stress. Many microspores die after this stress, limiting the efficiency of microspore embryogenesis. Autophagy is a degradation pathway that plays critical roles in stress response and cell death.
View Article and Find Full Text PDF