Publications by authors named "I B Spielman"

We experimentally and theoretically investigate the anisotropic speed of sound of an atomic superfluid (SF) Bose-Einstein condensate in a 1D optical lattice. Because the speed of sound derives from the SF density, this implies that the SF density is itself anisotropic. We find that the speed of sound is decreased by the optical lattice, and the SF density is concomitantly reduced.

View Article and Find Full Text PDF

Ultracold atoms are an ideal platform for understanding system-reservoir dynamics of many-body systems. Here, we study quantum back-action in atomic Bose-Einstein condensates, weakly interacting with a far-from resonant, i.e.

View Article and Find Full Text PDF

A majority of ultracold atom experiments utilize resonant absorption imaging techniques to obtain the atomic density. To make well-controlled quantitative measurements, the optical intensity of the probe beam must be precisely calibrated in units of the atomic saturation intensity I. In quantum gas experiments, the atomic sample is enclosed in an ultra-high vacuum system that introduces loss and limits optical access; this precludes a direct determination of the intensity.

View Article and Find Full Text PDF

Here we revisit the topic of stationary and propagating solitonic excitations in self-repulsive three-dimensional (3D) Bose-Einstein condensates by quantitatively comparing theoretical analysis and associated numerical computations with our experimental results. Motivated by numerous experimental efforts, including our own herein, we use fully 3D numerical simulations to explore the existence, stability, and evolution dynamics of planar dark solitons. This also allows us to examine their instability-induced decay products including solitonic vortices and vortex rings.

View Article and Find Full Text PDF

Nontrivial topology in lattices is characterized by invariants-such as the Zak phase for one-dimensional (1D) lattices-derived from wave functions covering the Brillouin zone. We realize the 1D bipartite Rice-Mele (RM) lattice using ultracold ^{87}Rb and focus on lattice configurations possessing various combinations of chiral, time-reversal, and particle-hole symmetries. We quench between configurations and use a form of quantum state tomography, enabled by diabatically tuning lattice parameters, to directly follow the time evolution of the Zak phase as well as a chiral winding number.

View Article and Find Full Text PDF