Publications by authors named "I B Bronshteĭn"

Lamins form stable filaments at the nuclear periphery in metazoans. Unlike B-type lamins, lamins A and C localize also in the nuclear interior, where they interact with lamin-associated polypeptide 2 alpha (LAP2α). Using antibody labeling, we previously observed a depletion of nucleoplasmic A-type lamins in mouse cells lacking LAP2α.

View Article and Find Full Text PDF

The nucleus in eukaryotic cells is a crowded environment that consists of genetic code along the DNA, together with a condensed solution of proteins, RNA, and other molecules. It is subjected to highly dynamic processes, including cell division, transcription, and DNA repair. In addition, the genome in the nucleus is subjected to external forces applied by the cytoplasmic skeleton and neighboring cells, as well as to internal nuclear forces.

View Article and Find Full Text PDF

The widely employed crystallization of organic molecules in solution is not well understood and is difficult to control. Employing polymers as crystallization media may allow enhanced control via temperature-induced regulation of polymer dynamics. Crystallization of a small organic molecule (perylene diimide) is investigated in polymer matrices (polystyrene) that enable the mechanistic study and control over order evolution.

View Article and Find Full Text PDF

Sleep is essential to all animals with a nervous system. Nevertheless, the core cellular function of sleep is unknown, and there is no conserved molecular marker to define sleep across phylogeny. Time-lapse imaging of chromosomal markers in single cells of live zebrafish revealed that sleep increases chromosome dynamics in individual neurons but not in two other cell types.

View Article and Find Full Text PDF

During the past three decades, the study of nuclear and chromatin organization has become of great interest. The organization and dynamics of chromatin are directly responsible for many functions including gene regulation, genome replication, and maintenance. In order to better understand the details of these mechanisms, we need to understand the role of specific proteins that take part in these processes.

View Article and Find Full Text PDF