The cardiac perivascular niche is a cellular microenvironment of a blood vessel. The principles of niche regulation are still poorly understood. We studied the effect of TGFβ1 on cells forming the cardiac perivascular niche using 3D cell culture (cardiospheres).
View Article and Find Full Text PDFThe expression of human gene, which encodes the urokinase plasminogen activator receptor (uPAR), is cell- and process-specific and elevated in inflammation, cancer and senescence. Its tight regulation is achieved by regulatory elements in the gene locus, such as the promoter and several enhancers. The promoter activity is not specific to a particular cell type and has been described earlier.
View Article and Find Full Text PDFThe cellular secretome is pivotal in mediating intercellular communication and coordinating responses to stressors. Exosomes, initially recognized for their role in waste disposal, have now emerged as key intercellular messengers with significant therapeutic and diagnostic potential. Similarly, autophagy has transcended its traditional role as a waste removal mechanism, emerging as a regulator of intracellular communication pathways and a contributor to a unique autophagy-dependent secretome.
View Article and Find Full Text PDFCardiosphere-derived cells (CDCs) are currently being evaluated in clinical trials as a potential therapeutic tool for regenerative medicine. The effectiveness of transplanted CDCs is largely attributed to their ability to release beneficial soluble factors to enhance therapeutic effects. An emerging area of research is the pretreatment of stem cells, including CDCs, with various cytokines to improve their therapeutic properties.
View Article and Find Full Text PDF