Publications by authors named "I Aranson"

Enzymatic nanomotors harvest kinetic energy through the catalysis of chemical fuels. When a drop containing nanomotors is placed in a fuel-rich environment, they assemble into ordered groups and exhibit intriguing collective behaviour akin to the bioconvection of aerobic microorganismal suspensions. This collective behaviour presents numerous advantages compared to individual nanomotors, including expanded coverage and prolonged propulsion duration.

View Article and Find Full Text PDF

As Wolbachia pipientis is more widely being released into field populations of Aedes aegypti for disease control, the ability to select the appropriate strain for differing environments is increasingly important. A previous study revealed that longer-term quiescence in the egg phase reduced the fertility of mosquitoes, especially those harboring the wAlbB Wolbachia strain. This infertility was also associated with a greater biting rate.

View Article and Find Full Text PDF

Practical applications of synthetic self-propelled nano and microparticles for microrobotics, targeted drug delivery, and manipulation at the nanoscale are rapidly expanding. However, fabrication limitations often hinder progress, resulting in relatively simple shapes and limited functionality. Here, taking advantage of 3D nanoscale printing, chiral micropropellers powered by the hydrogen peroxide reduction reaction are fabricated.

View Article and Find Full Text PDF

Active matter demonstrates complex spatiotemporal self-organization not accessible at equilibrium and the emergence of collective behavior. Fluids comprised of microscopic Quincke rollers represent a popular realization of synthetic active matter. Temporal activity modulations, realized by modulated external electric fields, represent an effective tool to expand the variety of accessible dynamic states in active ensembles.

View Article and Find Full Text PDF

Bacteria form human and animal microbiota. They are the leading causes of many infections and constitute an important class of active matter. Concentrated bacterial suspensions exhibit large-scale turbulent-like locomotion and swarming.

View Article and Find Full Text PDF