This systematic review aimed at investigating the role that biosecurity can have in preventing or controlling colibacillosis in broiler production. Primary studies with natural or experimental exposure to avian pathogenic Escherichia coli, evaluating any biosecurity measure to prevent or control colibacillosis in broiler chickens with at least one of the following outcomes: feed conversion ratio (FCR), condemnations at slaughter, and mortality due to colibacillosis, were included. A systematic search was carried out in 4 databases according to the Cochrane handbook and reported following the PRISMA 2020 directions.
View Article and Find Full Text PDFColibacillosis, a disease caused by Escherichia coli in broiler chickens has serious implications on food safety, security, and economic sustainability. Antibiotics are required for treating the disease, while vaccination and biosecurity are used for its prevention. This systematic review and meta-analysis, conducted under the COST Action CA18217-European Network for Optimization of Veterinary Antimicrobial Treatment (ENOVAT), aimed to assess the efficacy of E.
View Article and Find Full Text PDFDairy products play a crucial role in human nutrition as they provide essential nutrients. However, the presence of diverse microorganisms in these products can pose challenges to food safety and quality. Here, we provide a comprehensive molecular characterization of a diverse collection of lactic acid bacteria (LAB) and staphylococci isolated from raw sheep's milk.
View Article and Find Full Text PDFIntroduction: Colibacillosis is a worldwide prevalent disease in poultry production linked to strains that belong to the avian pathogenic (APEC) pathotype. While many virulence factors have been linked to APEC isolates, no single gene or set of genes has been found to be exclusively associated with the pathotype. Moreover, a comprehensive description of the biological processes linked to APEC pathogenicity is currently lacking.
View Article and Find Full Text PDFLactic acid bacteria (LAB) are valuable for the production of fermented dairy products. We investigated the functional traits of LAB isolated from artisanal cheeses and raw sheep milk, assessed their safety status, and explored the genetic processes underlying the fermentation of carbohydrates. had the largest and more functional genome compared to all other LAB, while most of its protein-encoding genes had unknown functions.
View Article and Find Full Text PDF