Publications by authors named "I Amundsen"

Background: Human milk oligosaccharide supplementation safely modulates fecal bifidobacteria abundance and holds the potential to manage symptoms in irritable bowel syndrome (IBS). Here, we aimed to determine the role of a 4:1 mix of 2'-O-fucosyllactose and lacto-N-neotetraose (2'FL/LNnT) on the modulation of the gut microbiota composition and host mucosal response, as well as the link between the bifidobacteria abundance and metabolite modulation, in IBS patients.

Methods: Biological samples were collected from IBS patients ( = 58) at baseline and week 4 post-supplementation with placebo, 5 g or 10 g doses of 2'FL/LNnT.

View Article and Find Full Text PDF

Objectives: Human milk oligosaccharides (HMOs) impact the intestinal microbiota by increasing beneficial bacteria in infants and adults, and are safe and well tolerated in these age groups. Effects on intestinal microbiota, safety, and digestive tolerance in children have not been, however, assessed. The aims of this trial were to evaluate if HMOs are able to specifically modulate the intestinal microbiota in children, and to assess safety and digestive tolerance.

View Article and Find Full Text PDF

Introduction: Treatment options for irritable bowel syndrome (IBS) are limited, causing many patients to remain symptomatic. This study assessed the potential of human milk oligosaccharides (HMOs) to normalize bowel habits. Secondary outcomes included IBS severity and health-related quality of life.

View Article and Find Full Text PDF

Objectives: Human milk oligosaccharides safely and beneficially impact bifidobacteria abundance in healthy adults, while their effects in patients with irritable bowel syndrome (IBS) are unknown. Hence, we aimed to determine the dose of 4:1 mix of 2'-O-fucosyllactose and Lacto-N-neotetraose (2'FL/LNnT) that increases fecal bifidobacteria abundance without aggravating overall gastrointestinal symptoms in IBS patients in a randomized, double-blind, controlled study. Additionally, the impact of 2'FL/LNnT on the fecal bacterial profile was assessed.

View Article and Find Full Text PDF

Background: Dietary intake of polyunsaturated fatty acids (PUFAs), e.g., linoleic acid and n-3 (ω-3) long-chain PUFAs, has been shown in adults to affect plasma cholesterol and triglycerides (TGs), respectively.

View Article and Find Full Text PDF