Publications by authors named "I Ajioka"

Photon upconversion (UC) from red or near-infrared (NIR) light to blue light is promising for in vivo optogenetics. However, the examples of in vivo optogenetics have been limited to lanthanide inorganic UC nanoparticles, and there have been no examples of optogenetics without using heavy metals. Here the first example of in vivo optogenetics using biocompatible heavy metal-free TTA-UC nanoemulsions is shown.

View Article and Find Full Text PDF

Biological membranes are functionalized by membrane-associated protein machinery. Membrane-associated transport processes, such as endocytosis, represent a fundamental and universal function mediated by membrane-deforming protein machines, by which small biomolecules and even micrometer-size substances can be transported via encapsulation into membrane vesicles. Although synthetic molecules that induce dynamic membrane deformation have been reported, a molecular approach enabling membrane transport in which membrane deformation is coupled with substance binding and transport remains critically lacking.

View Article and Find Full Text PDF
Article Synopsis
  • * A new approach utilizes an amphiphilic peptide (Ncad-mRADA) combined with hydrogels to promote the migration of neuroblasts (young neurons) to damaged areas of the brain.
  • * Testing showed that Ncad-mRADA not only aided neuroblast movement toward injured sites but also significantly enhanced neuronal regeneration and recovery in neonatal brain injury, showcasing its potential as a regenerative therapy.
View Article and Find Full Text PDF

Ischemic stroke leads to acute neuron death and forms an injured core, triggering delayed cell death at the penumbra. The impaired brain functions after ischemic stroke are hardly recovered because of the limited regenerative properties. However, recent rodent intervention studies manipulating the extracellular environments at the subacute phase shed new light on the regenerative potency of the injured brain.

View Article and Find Full Text PDF

During injured tissue regeneration, the extracellular matrix plays a key role in controlling and coordinating various cellular events by binding and releasing secreted proteins in addition to promoting cell adhesion. Herein, we develop a cell-adhesive fiber-forming peptide that mimics the jigsaw-shaped hydrophobic surface in the dovetail-packing motif of glycophorin A as an artificial extracellular matrix for regenerative therapy. We show that the jigsaw-shaped self-assembling peptide forms several-micrometer-long supramolecular nanofibers through a helix-to-strand transition to afford a hydrogel under physiological conditions and disperses homogeneously in the hydrogel.

View Article and Find Full Text PDF