The classical view of the structural changes that occur at the ferroelectric transition in perovskite-structured systems, such as BaTiO, is that polarization occurs due to the off-center displacement of the B-site cations. Here, we show that in the bismuth sodium titanate (BNT)-based composition 0.2(BaSrTiO)-0.
View Article and Find Full Text PDFHigher adducts of a fullerene, such as the bis-adduct of PCBM (bis-PCBM), can be used to achieve shallower molecular orbital energy levels than, for example, PCBM or C Substituting the bis-adduct for the parent fullerene is useful to increase the open-circuit voltage of organic solar cells or achieve better energy alignment as electron transport layers in, for example, perovskite solar cells. However, bis-PCBM is usually synthesized as a mixture of structural isomers, which can lead to both energetic and morphological disorder, negatively affecting device performance. Here, we present a comprehensive study on the molecular properties of 19 pure bis-isomers of PCBM using a variety of characterization methods, including ultraviolet photoelectron spectroscopy, thermal gravimetric analysis, differential scanning calorimetry, single crystal structure, and (time-dependent) density functional theory calculation.
View Article and Find Full Text PDFIf magnesium-ion batteries (MIBs) are to be seriously considered for next-generation energy storage, then a number of major obstacles need to be overcome. The lack of reversible cathode materials with sufficient capacity and cycle life is one of these challenges. Here, we report a new MIB cathode constructed of vertically stacked vanadium molybdenum sulfide (VMS) nanosheets toward addressing this challenge.
View Article and Find Full Text PDFNew solid electrolytes are crucial for the development of all-solid-state lithium batteries with advantages in safety and energy densities over current liquid electrolyte systems. While some of the best solid-state Li-ion conductors are based on sulfides, their air sensitivity makes them less commercially attractive, and attention is refocusing on air-stable oxide-based systems. Among these, the LISICON-structured systems, such as LiZnGeO and LiVGeO, have been relatively well studied.
View Article and Find Full Text PDFMesoporous glasses are a promising class of bioresorbable biomaterials characterized by high surface area and extended porosity in the range of 2 to 50 nm. These peculiar properties make them ideal materials for the controlled release of therapeutic ions and molecules. Whilst mesoporous silicate-based glasses (MSG) have been widely investigated, much less work has been done on mesoporous phosphate-based glasses (MPG).
View Article and Find Full Text PDF