Complex systems ranging from societies to ecological communities and power grids may be viewed as networks of connected elements. Such systems can go through critical transitions driven by an avalanche of contagious change. Here we ask, where in a complex network such a systemic shift is most likely to start.
View Article and Find Full Text PDFTropical seascapes rely on the feedback relationships among mangrove forests, seagrass meadows, and coral reefs, as they mutually facilitate and enhance each other's functionality. Biogeochemical fluxes link tropical coastal habitats by exchanging material flows and energy through various natural processes that determine the conditions for life and ecosystem functioning. However, little is known about the seascape-scale implications of anthropogenic disruptions to these linkages.
View Article and Find Full Text PDFImportance: Dynamical systems theory is widely used to explain tipping points, cycles, and chaos in complex systems ranging from the climate to ecosystems. It has been suggested that the same theory may be used to explain the nature and dynamics of psychiatric disorders, which may come and go with symptoms changing over a lifetime. Here we review evidence for the practical applicability of this theory and its quantitative tools in psychiatry.
View Article and Find Full Text PDF