Colloidal semiconductor nanocrystals are promising materials for classical and quantum light sources due to their efficient photoluminescence (PL) and versatile chemistry. While visible emitters are well-established, excellent (near-infrared) sources are still being pursued. We present the first comprehensive analysis of low-temperature PL from two-dimensional (2D) PbS nanoplatelets (NPLs).
View Article and Find Full Text PDFRecent developments in X-ray science provide methods to probe deeply embedded mesoscale grain structures and spatially resolve them using dark field X-ray microscopy (DFXM). Extending this technique to investigate weak diffraction signals such as magnetic systems, quantum materials and thin films prove challenging due to available detection methods and incident X-ray flux at the sample. We present a direct detection method developed in conjunction with KAImaging which focuses on DFXM studies in the hard X-ray range of 10s of keV and above capable of approaching nanoscale resolution.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
September 2024
Protein crystallization is among the key processes in biomolecular research, but the underlying mechanisms are still elusive. Here, we address the role of inevitable interfaces for the nucleation process. Quartz crystal microbalance with dissipation monitoring (QCM-D) with simultaneously optical microscopy, confocal microscopy, and grazing-incidence small angle X-rays scattering (GISAXS) were employed to investigate the temporal behavior from the initial stage of protein adsorption to crystallization.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2024
Mixed-halide perovskites of the composition MAPb(BrI), which seem to exhibit a random and uniform distribution of halide ions in the absence of light, segregate into bromide- and iodide-rich phases under illumination. This phenomenon of halide segregation has been widely investigated in the photovoltaics context since it is detrimental for the material properties and ultimately the device performance of these otherwise very attractive materials. A full understanding of the mechanisms and driving forces has remained elusive.
View Article and Find Full Text PDFWe apply ultrashort X-ray laser pulses to track optically excited structural dynamics of [Ir(dimen)] molecules in solution. In our exploratory study we determine angular correlations in the scattered X-rays, which comprise a complex fingerprint of the ultrafast dynamics. Model-assisted analysis of the experimental correlation data allows us to elucidate various aspects of the photoinduced changes in the excited molecular ensembles.
View Article and Find Full Text PDF