Publications by authors named "I A Udovichenko"

A short synthetic peptide from the C-terminal part of the caveolin-3 structure was tested for experimental autoimmune encephalomyelitis (EAE) treatment in rats. The structure-function similarity established between the novel synthetic peptide of pCav3 and the well-known immunomodulator immunocortin determined pCav3's ability to reduce EAE symptoms in Dark Agouti (DA) rats injected with pCav3 (500 µg/kg). pCav3 was found to interfere with the proliferation of lymphocytes extracted from the LNs of DA rats primed with homogenate injection, with IC = 0.

View Article and Find Full Text PDF

Immunosuppressant peptide immunocortin for the first time was described in 1993. It corresponds to residues 11-20 of human Ig heavy chain (conserved motif of V domain). There are no data about production of immunocortin by proteolysis of Ig in vivo.

View Article and Find Full Text PDF

Peptide immunocortin sequence corresponds to the amino acid residues 11-20 of the variable part of human immunoglobulin G1 (IgG1) heavy chain. Since immunocortin was shown previously to inhibit phagocytosis in peritoneal macrophages and ConA-induced T-lymphocytes proliferation in culture, we suggested that immunocortin administering may be of use for patients with self-immune syndrome. Immunocortin in concentration 10 μM inhibited proliferation of both antigen (myelin)-induced and ConA-induced LN lymphocytes isolated from the lymph nodes of Dark Agouti (DA) rats immunized with chorda shear.

View Article and Find Full Text PDF

RADA-16-I is a self-assembling peptide which forms biocompatible fibrils and hydrogels. We used molecular dynamics simulations, atomic-force microscopy, NMR spectroscopy, and thioflavin T binding assay to examine size, structure, and morphology of RADA-16-I aggregates. We used the native form of RADA-16-I (H-(ArgAlaAspAla)4 -OH) rather than the acetylated one commonly used in the previous studies.

View Article and Find Full Text PDF

Anti-angiogenic therapy is currently a commonly accepted and rapidly developing approach in oncology and other pathologies linked to aberrant neovascularization. Discovery and validation of additional molecular targets in angiogenesis is needed due to the limitations of the existing clinical therapeutics inhibiting activity of vascular endothelial growth factor (VEGF) and its receptors. A brief review of normal and pathological biological functions of the Eph family of receptor tyrosine kinases and their ephrin ligands is presented, and the approaches to developing therapeutics with anti- and pro-angiogenic and anti-tumor activity based on selective molecular modulation of Eph-ephrin signaling pairs are discussed.

View Article and Find Full Text PDF