Publications by authors named "I A Tikhonovich"

The aim of this research was to study the effect of plant-growth-promoting bacteria (PGPB) isolated from the drought-tolerant plants camel thorn ( (M.Bieb.) Fisch) and white pigweed ( L.

View Article and Find Full Text PDF

Hydrogen peroxide (HO) in plants is produced in relatively large amounts and plays a universal role in plant defense and physiological responses, including the regulation of growth and development. In the -legume symbiosis, hydrogen peroxide plays an important signaling role throughout the development of this interaction. In the functioning nodule, HO has been shown to be involved in bacterial differentiation into the symbiotic form and in nodule senescence.

View Article and Find Full Text PDF

Pea ( L.), like most legumes, forms mutualistic symbioses with nodule bacteria and arbuscular mycorrhizal (AM) fungi. The positive effect of inoculation is partially determined by the plant genotype; thus, pea varieties with high and low symbiotic responsivity have been described, but the molecular genetic basis of this trait remains unknown.

View Article and Find Full Text PDF

It is well known that plant-growth-promoting rhizobacteria (PGPRs) increase the tolerance of plants to abiotic stresses; however, the counteraction of Al toxicity has received little attention. The effects of specially selected Al-tolerant and Al-immobilizing microorganisms were investigated using pea cultivar Sparkle and its Al-sensitive mutant E107 (). The strain sp.

View Article and Find Full Text PDF

Combined inoculation of legumes with rhizobia and plant growth-promoting rhizobacteria or endophytes is a known technique for increasing the efficiency of nitrogen-fixing symbiosis and plant productivity. The aim of this work was to expand knowledge about the synergistic effects between commercial rhizobia of pasture legumes and root nodule bacteria of relict legume species. Pot experiments were performed on common vetch ( L.

View Article and Find Full Text PDF