Marine mammals, due to their long life span, key position in the food web, and large lipid deposits, often face significant health risks from accumulating contaminants. This systematic review examines published literature on pollutant-induced adverse health effects in the International Union for Conservation of Nature (IUCN) red-listed marine mammal species. Thereby, identifying gaps in literature across different extinction risk categories, spatial distribution and climatic zones of studied habitats, commonly used methodologies, researched pollutants, and mechanisms from cellular to population levels.
View Article and Find Full Text PDFPacking biomolecules inside virus capsids has opened new avenues for the study of molecular function in confined environments. These systems not only mimic the highly crowded conditions in nature, but also allow their manipulation at the nanoscale for technological applications. Here, green fluorescent proteins are packed in virus-like particles derived from P22 bacteriophage procapsids.
View Article and Find Full Text PDFEnvironmental contaminants pose serious health threats to marine megafauna species, yet methods defining exposure threshold limits are lacking. Here, a three-pillar chemical risk assessment framework is presented based on (1) species- and chemical-specific lifetime bioaccumulation modelling, (2) non-destructive in vitro and in vivo toxicity threshold assessment, and (3) chemical risk quantification. We used the effects of cadmium (Cd) in green sea turtles (Chelonia mydas) as a proof of concept to evaluate the quantitative mechanistic modelling approach.
View Article and Find Full Text PDFAtomic force microscopy employs a nanometric tip located at the end of a micro-cantilever to probe surface-mounted samples at nanometer resolution. Because the technique can also work in a liquid environment it offers unique possibilities to study individual viruses under conditions that mimic their natural milieu. Here, we review how AFM imaging can be used to study the surface structure of viruses including that of viruses lacking a well-defined symmetry.
View Article and Find Full Text PDFDeformation of the plasma membrane into clathrin-coated vesicles is a critical step in clathrin-mediated endocytosis and requires the orchestrated assembly of clathrin and endocytic adaptors into a membrane-associated protein coat. The individual role of these membrane-bending and curvature-stabilizing factors is subject to current debate. As such, it is unclear whether the clathrin coat itself is stiff enough to impose curvature and if so, whether this could be effectively transferred to the membrane by the linking adaptor proteins.
View Article and Find Full Text PDF