2D magnets have emerged as a class of materials highly promising for studies of quantum phenomena and applications in ultra-compact spintronics. Current research aims at design of 2D magnets with particular functional properties. A formidable challenge is to produce metallic monolayers: the material landscape of layered magnetic systems is strongly dominated by insulators; rare metallic magnets, such as FeGeTe, become insulating as they approach the monolayer limit.
View Article and Find Full Text PDFA central building block of many quantum algorithms is the diagonalization of Pauli operators. Although it is always possible to construct a quantum circuit that simultaneously diagonalizes a given set of commuting Pauli operators, only resource-efficient circuits can be executed reliably on near-term quantum computers. Generic diagonalization circuits, in contrast, often lead to an unaffordable SWAP gate overhead on quantum devices with limited hardware connectivity.
View Article and Find Full Text PDFThe observed increase in the production of enzyme preparations (EP) using mutant and genetically modified microorganisms makes it necessary to assess their risks to consumer health. However, at present, their possible influence on the microbiome, immune status of the macroorganism has not been sufficiently studied. of the research was to assess the effect of two EP - the complex of hydrolases with proteolytic and nuclease activity from the Aspergillus oryzae RCAM 01134 mutant strain (EP1) and the neutral protease - bacillolysin and serine protease from the Bacillus subtilis-96 (VKM B-3499D) mutant strain (FP2) on the intestine microbiome and cellular immunity indices of the experimental animals.
View Article and Find Full Text PDFWe analyzed spin polarization dynamics in a two-dimensional system of spin 1/2 charged particles with spin-orbit interaction in perpendicular magnetic field in the presence of external noise. It was shown that spin polarization reveals quantum oscillations, collapses, and revivals. The hierarchy of time scales corresponding to quantum oscillations, collapses, and revivals was identified and analyzed.
View Article and Find Full Text PDFThe ability of light to manipulate fundamental interactions in a medium is central to research in optomagnetism and applications in electronics. A prospective approach is to create composite quasiparticles, magnetic polarons, highly susceptible to external stimuli. To control magnetic and transport properties by weak magnetic and electric fields, it is important to find materials that support photoinduced magnetic polarons with colossal net magnetic moments.
View Article and Find Full Text PDF