Publications by authors named "I A Selby"

Background: Artificial intelligence (AI) systems for automated chest x-ray interpretation hold promise for standardising reporting and reducing delays in health systems with shortages of trained radiologists. Yet, there are few freely accessible AI systems trained on large datasets for practitioners to use with their own data with a view to accelerating clinical deployment of AI systems in radiology. We aimed to contribute an AI system for comprehensive chest x-ray abnormality detection.

View Article and Find Full Text PDF

The National COVID-19 Chest Imaging Database (NCCID) is a centralized UK database of thoracic imaging and corresponding clinical data. It is made available by the National Health Service Artificial Intelligence (NHS AI) Lab to support the development of machine learning tools focused on Coronavirus Disease 2019 (COVID-19). A bespoke cleaning pipeline for NCCID, developed by the NHSx, was introduced in 2021.

View Article and Find Full Text PDF

Radiomics is a rapidly developing field of research focused on the extraction of quantitative features from medical images, thus converting these digital images into minable, high-dimensional data, which offer unique biological information that can enhance our understanding of disease processes and provide clinical decision support. To date, most radiomics research has been focused on oncological applications; however, it is increasingly being used in a raft of other diseases. This review gives an overview of radiomics for a clinical audience, including the radiomics pipeline and the common pitfalls associated with each stage.

View Article and Find Full Text PDF

Removing the bias and variance of multicentre data has always been a challenge in large scale digital healthcare studies, which requires the ability to integrate clinical features extracted from data acquired by different scanners and protocols to improve stability and robustness. Previous studies have described various computational approaches to fuse single modality multicentre datasets. However, these surveys rarely focused on evaluation metrics and lacked a checklist for computational data harmonisation studies.

View Article and Find Full Text PDF