Establishing a zebrafish model of a deadly type of brain tumor highlights the role of the immune system in the early stages of the disease.
View Article and Find Full Text PDFGlioblastoma is an aggressive and incurable brain cancer. This cancer establishes both local and systemic immunosuppression that creates a major obstacle to effective immunotherapies. Many studies point to tumor-resident myeloid cells (primarily microglia and macrophages) as key mediators of this immunosuppression.
View Article and Find Full Text PDFThe clinical efficacy of VSVΔ51 oncolytic virotherapy has been limited by tumor resistance to viral infection, so strategies to transiently repress antiviral defenses are warranted. Pevonedistat is a first-in-class NEDD8-activating enzyme (NAE) inhibitor currently being tested in clinical trials for its antitumor potential. In this study, we demonstrate that pevonedistat sensitizes human and murine cancer cells to increase oncolytic VSVΔ51 infection, increase tumor cell death, and improve therapeutic outcomes in resistant syngeneic murine cancer models.
View Article and Find Full Text PDFThe protein Lgl1 is a key regulator of cell polarity. We previously showed that Lgl1 is inactivated by hyperphosphorylation in glioblastoma as a consequence of PTEN tumour suppressor loss and aberrant activation of the PI 3-kinase pathway; this contributes to glioblastoma pathogenesis both by promoting invasion and repressing glioblastoma cell differentiation. Lgl1 is phosphorylated by atypical protein kinase C that has been activated by binding to a complex of the scaffolding protein Par6 and active, GTP-bound Rac.
View Article and Find Full Text PDF