Publications by authors named "I A Kosevich"

Background: As the sister group to all Bilateria, representatives of the phylum Cnidaria (sea anemones, corals, jellyfishes, and hydroids) possess a recognizable and well-developed nervous system and have attracted considerable attention over the years from neurobiologists and evo-devo researchers. Despite a long history of nervous system investigation in Cnidaria, most studies have been performed on unitary organisms. However, the majority of cnidarians are colonial (modular) organisms with unique and specific features of development and function.

View Article and Find Full Text PDF

Since ctenostomes are traditionally regarded as an ancestral clade to some other bryozoan groups, the study of additional species may help to clarify questions on bryozoan evolution and phylogeny. One of these questions is the bryozoan lophophore evolution: whether it occurred through simplification or complication. The morphology and innervation of the ctenostome Flustrellidra hispida (Fabricius, 1780) lophophore have been studied with electron microscopy and immunocytochemistry with confocal laser scanning microscopy.

View Article and Find Full Text PDF

Background: (Scyphozoa, Cnidaria) is an emblematic species of the jellyfish. Currently, it is an emerging model of Evo-Devo for studying evolution and molecular regulation of metazoans' complex life cycle, early development, and cell differentiation. For , the genome was sequenced, the molecular cascades involved in the life cycle transitions were characterized, and embryogenesis was studied on the level of gross morphology.

View Article and Find Full Text PDF

A unique set of features and characteristics of species of the Cnidaria phylum is the one reason that makes them a model for a various studies. The plasticity of a life cycle and the processes of cell differentiation and development of an integral multicellular organism associated with it are of a specific scientific interest. A new stage of development of molecular genetic methods, including methods for high-throughput genome, transcriptome, and epigenome sequencing, both at the level of the whole organism and at the level of individual cells, makes it possible to obtain a detailed picture of the development of these animals.

View Article and Find Full Text PDF

Mytilus edulis embryo-larval development is often used as a bioassay to evaluate the negative impact of contaminants and environmental conditions. The toxicity criteria used in most protocols is the proportions of normal and abnormal larvae. The variety of abnormalities were described and classified, but further development of abnormal larvae remains obscure.

View Article and Find Full Text PDF