J Environ Sci (China)
February 2018
Coking wastewater (CW) contains toxic and macromolecular substances that inhibit biological treatment. The refractory compounds remaining in biologically treated coking wastewater (BTCW) provide chemical oxygen demand (COD) and color levels that make it unacceptable for reuse or disposal. Gas-phase pulsed corona discharge (PCD) utilizing mostly hydroxyl radicals and ozone as oxidants was applied to both raw coking wastewater (RCW) and BTCW wastewater as a supplemental treatment.
View Article and Find Full Text PDFThe highly energetic electrons in non-thermal plasma generated by gas phase pulsed corona discharge (PCD) produce hydroxyl (OH) radicals via collision reactions with water molecules. Previous work has established that OH radicals are formed at the plasma-liquid interface, making it an important location for the oxidation of aqueous pollutants. Here, by contacting water as aerosol with PCD plasma, it is shown that OH radicals are produced on the gas side of the interface, and not in the liquid phase.
View Article and Find Full Text PDFPhys Rev Lett
September 2017
Using first-principles-based simulations merging an effective Hamiltonian scheme with scaling, symmetry, and topological arguments, we find that an overlooked Berezinskii-Kosterlitz-Thouless (BKT) phase sustained by quasicontinuous symmetry emerges between the ferroelectric phase and the paraelectric one of BaTiO_{3} ultrathin film, being under tensile strain. Not only do these results provide an extension of BKT physics to the field of ferroelectrics, but they also unveil their nontrivial critical behavior in low dimensions.
View Article and Find Full Text PDFIn light of directives around the world to eliminate toxic materials in various technologies, finding lead-free materials with high piezoelectric responses constitutes an important current scientific goal. As such, the recent discovery of a large electromechanical conversion near room temperature in (1-x)Ba(ZrTi)O-x(BaCa)TiO compounds has directed attention to understanding its origin. Here, we report the development of a large-scale atomistic scheme providing a microscopic insight into this technologically promising material.
View Article and Find Full Text PDF