Serum-derived bovine immunoglobulin (SBI) prevents translocation and inflammation via direct binding of microbial components. Recently, SBI also displayed potential benefits through gut microbiome modulation. To confirm and expand upon these preliminary findings, SBI digestion and colonic fermentation were investigated using the clinically predictive ex vivo SIFR technology (for 24 human adults) that was, for the first time, combined with host cells (epithelial/immune (Caco-2/THP-1) cells).
View Article and Find Full Text PDFJ Funct Biomater
October 2023
Additively manufactured (AM) porous titanium implants may have an increased risk of implant-associated infection (IAI) due to their huge internal surfaces. However, the same surface, when biofunctionalized, can be used to prevent IAI. Here, we used a rat implant infection model to evaluate the biocompatibility and infection prevention performance of AM porous titanium against bioluminescent methicillin-resistant (MRSA).
View Article and Find Full Text PDFIndividual cells and multicellular systems respond to cell-scale curvatures in their environments, guiding migration, orientation, and tissue formation. However, it remains largely unclear how cells collectively explore and pattern complex landscapes with curvature gradients across the Euclidean and non-Euclidean spectra. Here, we show that mathematically designed substrates with controlled curvature variations induce multicellular spatiotemporal organization of preosteoblasts.
View Article and Find Full Text PDFNanoparticles (NPs) have high multifunctional potential to simultaneously enhance implant osseointegration and prevent infections caused by antibiotic-resistant bacteria. Here, we present the first report on using plasma electrolytic oxidation (PEO) to incorporate different combinations of reduced graphene oxide (rGO) and silver (Ag) NPs on additively manufactured geometrically ordered volume-porous titanium implants. The rGO nanosheets were mainly embedded parallel with the PEO surfaces.
View Article and Find Full Text PDFExtensive availability of engineered autologous dermo-epidermal skin substitutes (DESS) with functional and structural properties of normal human skin represents a goal for the treatment of large skin defects such as severe burns. Recently, a clinical phase I trial with this type of DESS was successfully completed, which included patients own keratinocytes and fibroblasts. Yet, two important features of natural skin were missing: pigmentation and vascularization.
View Article and Find Full Text PDF