Publications by authors named "I A Hoskins"

Characterization of shared patterns of RNA expression between genes across conditions has led to the discovery of regulatory networks and novel biological functions. However, it is unclear if such coordination extends to translation, a critical step in gene expression. Here, we uniformly analyzed 3,819 ribosome profiling datasets from 117 human and 94 mouse tissues and cell lines.

View Article and Find Full Text PDF

Multiplexed assays of variant effect are powerful methods to profile the consequences of rare variants on gene expression and organismal fitness. Yet, few studies have integrated several multiplexed assays to map variant effects on gene expression in coding sequences. Here, we pioneered a multiplexed assay based on polysome profiling to measure variant effects on translation at scale, uncovering single-nucleotide variants that increase or decrease ribosome load.

View Article and Find Full Text PDF

Multiplexed assays of variant effect are powerful methods to profile the consequences of rare variants on gene expression and organismal fitness. Yet, few studies have integrated several multiplexed assays to map variant effects on gene expression in coding sequences. Here, we pioneered a multiplexed assay based on polysome profiling to measure variant effects on translation at scale, uncovering single-nucleotide variants that increase and decrease ribosome load.

View Article and Find Full Text PDF

Translation regulation is critical for early mammalian embryonic development. However, previous studies had been restricted to bulk measurements, precluding precise determination of translation regulation including allele-specific analyses. Here, to address this challenge, we developed a novel microfluidic isotachophoresis (ITP) approach, named RIBOsome profiling via ITP (Ribo-ITP), and characterized translation in single oocytes and embryos during early mouse development.

View Article and Find Full Text PDF

The impact of millions of individual genetic variants on molecular phenotypes in coding sequences remains unknown. Multiplexed assays of variant effect (MAVEs) are scalable methods to annotate relevant variants, but existing software lacks standardization, requires cumbersome configuration, and does not scale to large targets. We present satmut_utils as a flexible solution for simulation and variant quantification.

View Article and Find Full Text PDF