Publications by authors named "I A Grimaldi"

The advancement of stereoregular polymerization techniques for linear 1,3-dienes has enabled the production of polymers with precise stereocontrol, influencing their physical and chemical properties significantly. While 1,3-butadiene and isoprene yield diverse stereoregular polymers, cyclic dienes have received less attention due to catalyst challenges and limited application in the rubber industry. However, the growing interest in bio-based monomers, particularly those derived from terpenes and terpenoids, has revitalized interest in cyclic monomers with conjugated double bonds.

View Article and Find Full Text PDF

The structure-properties relationships of sustainable materials derived from biomass-based monomers are investigated, focusing on hybrid styrene/terpene-based copolymers with blocky microstructures, such as β-myrcene- and β-ocimene-styrene copolymers. The samples show complex glass transition dynamics, as evidenced by the physical aging experienced by the amorphous phase in styrene-rich copolymers. The tendency of styrene- and terpene-rich sequences to give heterogeneous morphologies with correlation strength extending over 10-40 nm is outlined, through small-angle X-ray scattering analysis.

View Article and Find Full Text PDF

We present a detailed analysis of the electronic properties of graphene/Eu/Ni(111). By using angle- and spin-resolved photoemission spectroscopy and ab initio calculations, we show that the intercalation of Eu in the graphene/Ni(111) interface gives rise to a gapped freestanding dispersion of the ππ^{*} Dirac cones at the K[over ¯] point with an additional lifting of the spin degeneracy due to the mixing of graphene and Eu states. The interaction with the magnetic substrate results in a large spin-dependent gap in the Dirac cones with a topological nature characterized by a large Berry curvature and a spin-polarized Van Hove singularity, whose closeness to the Fermi level gives rise to a polaronic band.

View Article and Find Full Text PDF

Chromium and aluminum complexes bearing salalen ligands were explored as catalysts for the ring-opening copolymerization (ROCOP) of succinic (SA), maleic (MA), and phthalic (PA) anhydrides with several epoxides: cyclohexene oxide (CHO), propylene oxide (PO), and limonene oxide (LO). Their behavior was compared with that of traditional salen chromium complexes. A completely alternating enchainment of monomers to provide pure polyesters was achieved with all the catalysts when used in combination with 4-(dimethylamino)pyridine (DMAP) as the cocatalyst.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common and fatal primary tumor of the central nervous system (CNS) and current treatments have limited success. Chemokine signaling regulates both malignant cells and stromal cells of the tumor microenvironment (TME), constituting a potential therapeutic target against brain cancers. Here, we investigated the C-C chemokine receptor type 7 (CCR7) and the chemokine (C-C-motif) ligand 21 (CCL21) for their expression and function in human GBM and then assessed their therapeutic potential in preclinical mouse GBM models.

View Article and Find Full Text PDF