Publications by authors named "I A Ginzburg"

The goal of this work is to advance the characteristics of existing lattice Boltzmann Dirichlet velocity boundary schemes in terms of the accuracy, locality, stability, and mass conservation for arbitrarily grid-inclined straight walls, curved surfaces, and narrow fluid gaps, for both creeping and inertial flow regimes. We reach this objective with two infinite-member boundary classes: (1) the single-node "Linear Plus" (LI^{+}) and (2) the two-node "Extended Multireflection" (EMR). The LI^{+} unifies all directional rules relying on the linear combinations of up to three pre- or postcollision populations, including their "ghost-node" interpolations and adjustable nonequilibrium approximations.

View Article and Find Full Text PDF

We propose a procedure to implement Dirichlet velocity boundary conditions for complex shapes that use data from a single node only, in the context of the lattice Boltzmann method. Two ideas are at the base of this approach. The first is to generalize the geometrical description of boundary conditions combining bounce-back rule with interpolations.

View Article and Find Full Text PDF

This work addresses the Dirichlet boundary condition for momentum in the lattice Boltzmann method (LBM), with focus on the steady-state Stokes flow modelling inside non-trivial shaped ducts. For this task, we revisit a local and highly accurate boundary scheme, called the local second-order boundary (LSOB) method. This work reformulates the LSOB within the two-relaxation-time (TRT) framework, which achieves a more standardized and easy to use algorithm due to the pivotal parametrization TRT properties.

View Article and Find Full Text PDF

Impact of the unphysical tangential advective-diffusion constraint of the bounce-back (BB) reflection on the impermeable solid surface is examined for the first four moments of concentration. Despite the number of recent improvements for the Neumann condition in the lattice Boltzmann method-advection-diffusion equation, the BB rule remains the only known local mass-conserving no-flux condition suitable for staircase porous geometry. We examine the closure relation of the BB rule in straight channel and cylindrical capillary analytically, and show that it excites the Knudsen-type boundary layers in the nonequilibrium solution for full-weight equilibrium stencil.

View Article and Find Full Text PDF

The effect of the heterogeneity in the soil structure or the nonuniformity of the velocity field on the modeled resident time distribution (RTD) and breakthrough curves is quantified by their moments. While the first moment provides the effective velocity, the second moment is related to the longitudinal dispersion coefficient (k_{T}) in the developed Taylor regime; the third and fourth moments are characterized by their normalized values skewness (Sk) and kurtosis (Ku), respectively. The purpose of this investigation is to examine the role of the truncation corrections of the numerical scheme in k_{T}, Sk, and Ku because of their interference with the second moment, in the form of the numerical dispersion, and in the higher-order moments, by their definition.

View Article and Find Full Text PDF