BMY 7378 is a multitarget drug primarily known for its selective antagonism of α-adrenoceptors (α-AR), exhibiting both hypotensive effects and the ability to prevent or reverse angiotensin II-induced vascular hypertrophy. Notably, BMY 7378 contains a phenylpiperazine moiety, a structural feature associated with angiotensin-converting enzyme (ACE) inhibition. This study aimed to investigate ACE inhibition as a potential pharmacological mechanism of BMY 7378.
View Article and Find Full Text PDFRationale: Exercise attenuates addictive behavior; however, little is known about the contribution of exercise duration to this positive effect. The Renin Angiotensin System (RAS) has been implicated both in addictive responses and in the beneficial effects of exercise; though, its role in the advantageous effects of exercise on toluene-induced addictive responses has not been explored.
Objectives: To evaluate the impact of different exercise regimens in mitigating the expression of toluene-induced locomotor sensitization and to analyze changes in RAS elements' expression at the mesocorticolimbic system after repeated toluene exposure and following voluntary wheel running in toluene-sensitized animals.
The current pandemic generated by SARS-CoV-2 has led to mass vaccination with different biologics that have shown wide variations among human populations according to the origin and formulation of the vaccine. Studies evaluating the response in individuals with a natural infection before vaccination have been limited to antibody titer analysis and evaluating a few humoral and cellular response markers, showing a more rapid and intense humoral response than individuals without prior infection. However, the basis of these differences has not been explored in depth.
View Article and Find Full Text PDFInhalants are consumed worldwide for recreational purposes. The main component found in many inhalants is toluene. One of the most deleterious behavioural effects caused by chronic exposure to inhalants is addiction.
View Article and Find Full Text PDF