A special differential interferometer consisting of two gratings was developed for diagnostics of plasma density. Compared with other differential interferometers, our system has an important advantage that the shear distance, shear direction, and fringe width can be adjusted , enabling easy control of the parameters. This feature allows precise tuning of the two probe beams in the interferometer for rigorous differential phase diagnosis and more accurate information of the plasma density can be obtained.
View Article and Find Full Text PDFWe present a novel scheme to obtain robust, narrowband, and tunable THz emission using a nano-dimensional overdense plasma target, irradiated by two counter-propagating detuned laser pulses. So far, no narrowband THz sources with a field strength of GV/m-level have been reported from laser-solid interaction (mostly half-or single-cycle THz pulses with only broadband frequency spectrum). From two- and three-dimensional particle-in-cell simulations, we find that the strong plasma current generated by the beat ponderomotive force in the colliding region, produces beat-frequency radiation in the THz range.
View Article and Find Full Text PDFThe ASE (amplified spontaneous emission) level in a laser system consisting of an oscillator and a regenerative amplifier is very important, for example, in the interaction of an intense laser pulse and a thin foil, so a lower ASE level is always required. In this paper, we propose a new method to achieve a lower ASE level, which can be obtained by spectral matching of the seed laser beam and the ASE in a CPA (chirped-pulse amplification) Ti:sapphire laser system. In this method, two baffles are used to control the seed pulse spectrum by blocking a portion of the seed beam in a grating stretcher and it was found that the spectral matching method can reduce the temporal contrast ratio (after the regenerative amplifier) by a factor of 10 in a few hundred picosecond scale.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2012
Generation of petawatt-class pulses with a nearly single-cycle duration or with a strongly asymmetric longitudinal profile using a thin plasma layer are investigated via particle-in-cell simulations and the analytical flying mirror model. It is shown that the transmitted pulses having a duration as short as about 4 fs (1.2 laser cycles) or one-cycle front (tail) asymmetric pulses with peak intensity of about 10^{21}W/cm^{2} can be produced by optimizing system parameters.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
November 2011
A laser-driven plasma beat wave, propagating through a plasma with a periodic density modulation, can generate two sideband plasma waves. One sideband moves with a smaller phase velocity than the pump plasma wave and the other propagates with a larger phase velocity. The plasma beat wave with a smaller phase velocity can accelerate modest-energy electrons to gain substantial energy and the electrons are further accelerated by the main plasma wave.
View Article and Find Full Text PDFWe report a new simple method for the signal enhancement of laser-induced breakdown spectroscopy using a pulsed buffer gas jet. The signal is enhanced up to more than 10 fold by using argon gas jets, which are injected through a pulsed nozzle onto the sample area to be analyzed. By synchronizing the buffer gas pulse with the laser pulse and optimizing the spatial arrangements between the gas jet and the sample surface, we have successfully exploited the useful properties of the buffer gas in open atmosphere.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
July 2009
For controllable generation of an isolated attosecond relativistic electron bunch [relativistic electron mirror (REM)] with nearly solid-state density, we proposed [V. V. Kulagin, Phys.
View Article and Find Full Text PDFFor controllable generation of an isolated attosecond relativistic electron bunch [relativistic electron mirror (REM)] with nearly solid-state density, we propose using a solid nanofilm illuminated normally by an ultraintense femtosecond laser pulse having a sharp rising edge. With two-dimensional (2D) particle-in-cell (PIC) simulations, we show that, in spite of Coulomb forces, all of the electrons in the laser spot can be accelerated synchronously, and the REM keeps its surface charge density during evolution. We also developed a self-consistent 1D theory, which takes into account Coulomb forces, radiation of the electrons, and laser amplitude depletion.
View Article and Find Full Text PDF